stop-trained-model-deployment.asciidoc 1.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. [role="xpack"]
  2. [[stop-trained-model-deployment]]
  3. = Stop trained model deployment API
  4. [subs="attributes"]
  5. ++++
  6. <titleabbrev>Stop trained model deployment</titleabbrev>
  7. ++++
  8. Stops a trained model deployment.
  9. [[stop-trained-model-deployment-request]]
  10. == {api-request-title}
  11. `POST _ml/trained_models/<model_id>/deployment/_stop`
  12. [[stop-trained-model-deployment-prereq]]
  13. == {api-prereq-title}
  14. Requires the `manage_ml` cluster privilege. This privilege is included in the
  15. `machine_learning_admin` built-in role.
  16. [[stop-trained-model-deployment-desc]]
  17. == {api-description-title}
  18. Deployment is required only for trained models that have a PyTorch `model_type`.
  19. [[stop-trained-model-deployment-path-params]]
  20. == {api-path-parms-title}
  21. `<model_id>`::
  22. (Required, string)
  23. include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=model-id]
  24. [[stop-trained-model-deployment-query-params]]
  25. == {api-query-parms-title}
  26. `allow_no_match`::
  27. (Optional, Boolean)
  28. include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=allow-no-match-deployments]
  29. `force`::
  30. (Optional, Boolean) If true, the deployment is stopped even if it or one of its model aliases
  31. is referenced by ingest pipelines. You can't use these pipelines until you restart the model
  32. deployment.
  33. ////
  34. [role="child_attributes"]
  35. [[stop-trained-model-deployment-results]]
  36. == {api-response-body-title}
  37. ////
  38. ////
  39. [[stop-trained-models-response-codes]]
  40. == {api-response-codes-title}
  41. ////
  42. ////
  43. [[stop-trained-model-deployment-example]]
  44. == {api-examples-title}
  45. ////