delete-trained-models.asciidoc 1.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. [role="xpack"]
  2. [testenv="basic"]
  3. [[delete-trained-models]]
  4. = Delete trained models API
  5. [subs="attributes"]
  6. ++++
  7. <titleabbrev>Delete trained models</titleabbrev>
  8. ++++
  9. Deletes an existing trained {infer} model that is currently not referenced by an
  10. ingest pipeline.
  11. [[ml-delete-trained-models-request]]
  12. == {api-request-title}
  13. `DELETE _ml/trained_models/<model_id>`
  14. [[ml-delete-trained-models-prereq]]
  15. == {api-prereq-title}
  16. Requires the `manage_ml` cluster privilege. This privilege is included in the
  17. `machine_learning_admin` built-in role.
  18. [[ml-delete-trained-models-path-params]]
  19. == {api-path-parms-title}
  20. `<model_id>`::
  21. (Optional, string)
  22. include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=model-id]
  23. [[ml-delete-trained-models-response-codes]]
  24. == {api-response-codes-title}
  25. `409`::
  26. The code indicates that the trained model is referenced by an ingest pipeline
  27. and cannot be deleted.
  28. [[ml-delete-trained-models-example]]
  29. == {api-examples-title}
  30. The following example deletes the `regression-job-one-1574775307356` trained
  31. model:
  32. [source,console]
  33. --------------------------------------------------
  34. DELETE _ml/trained_models/regression-job-one-1574775307356
  35. --------------------------------------------------
  36. // TEST[skip:TBD]
  37. The API returns the following result:
  38. [source,console-result]
  39. ----
  40. {
  41. "acknowledged" : true
  42. }
  43. ----