123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- [role="xpack"]
- [testenv="platinum"]
- [[put-trained-models-aliases]]
- = Create or update trained model aliases API
- [subs="attributes"]
- ++++
- <titleabbrev>Create or update trained model aliases</titleabbrev>
- ++++
- Creates or updates a trained model alias.
- A trained model alias is a logical name used to reference a single trained model.
- [[ml-put-trained-models-aliases-request]]
- == {api-request-title}
- `PUT _ml/trained_models/<model_id>/model_aliases/<model_alias>`
- [[ml-put-trained-models-aliases-prereq]]
- == {api-prereq-title}
- Requires the `manage_ml` cluster privilege. This privilege is included in the
- `machine_learning_admin` built-in role.
- [[ml-put-trained-models-aliases-desc]]
- == {api-description-title}
- You can use aliases instead of trained model identifiers to make it easier to
- reference your models. For example, you can use aliases in {infer} aggregations
- and processors.
- An alias must be unique and refer to only a single trained model. However,
- you can have multiple aliases for each trained model.
- If you use this API to update an alias such that it references a different
- trained model ID and the model uses a different type of {dfanalytics}, an error
- occurs. For example, this situation occurs if you have a trained model for
- {reganalysis} and a trained model for {classanalysis}; you cannot reassign an
- alias from one type of trained model to another.
- If you use this API to update an alias and there are very few input fields in
- common between the old and new trained models for the model alias, the API
- returns a warning.
- [[ml-put-trained-models-aliases-path-params]]
- == {api-path-parms-title}
- `model_alias`::
- (Required, string)
- The alias to create or update. This value cannot end in numbers.
- `model_id`::
- (Required, string)
- The identifier for the trained model that the alias refers to.
- [[ml-put-trained-models-aliases-query-params]]
- == {api-query-parms-title}
- `reassign`::
- (Optional, boolean)
- Specifies whether the alias gets reassigned to the specified trained model if it
- is already assigned to a different model. If the alias is already assigned and
- this parameter is `false`, the API returns an error. Defaults to `false`.
- [[ml-put-trained-models-aliases-example]]
- == {api-examples-title}
- [[ml-put-trained-models-aliases-example-new-alias]]
- === Create a trained model alias
- The following example shows how to create an alias (`flight_delay_model`) for a
- trained model (`flight-delay-prediction-1574775339910`):
- [source,console]
- --------------------------------------------------
- PUT _ml/trained_models/flight-delay-prediction-1574775339910/model_aliases/flight_delay_model
- --------------------------------------------------
- // TEST[skip:setup kibana sample data]
- [[ml-put-trained-models-aliases-example-put-alias]]
- === Update a trained model alias
- The following example shows how to reassign an alias (`flight_delay_model`) to a
- different trained model (`flight-delay-prediction-1580004349800`):
- [source,console]
- --------------------------------------------------
- PUT _ml/trained_models/flight-delay-prediction-1580004349800/model_aliases/flight_delay_model?reassign=true
- --------------------------------------------------
- // TEST[skip:setup kibana sample data]
|