123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255 |
- [role="xpack"]
- [testenv="basic"]
- [[vector-functions]]
- ===== Functions for vector fields
- NOTE: During vector functions' calculation, all matched documents are
- linearly scanned. Thus, expect the query time grow linearly
- with the number of matched documents. For this reason, we recommend
- to limit the number of matched documents with a `query` parameter.
- This is the list of available vector functions and vector access methods:
- 1. `cosineSimilarity` – calculates cosine similarity
- 2. `dotProduct` – calculates dot product
- 3. `l1norm` – calculates L^1^ distance
- 4. `l2norm` - calculates L^2^ distance
- 5. `doc[<field>].vectorValue` – returns a vector's value as an array of floats
- 6. `doc[<field>].magnitude` – returns a vector's magnitude
- Let's create an index with a `dense_vector` mapping and index a couple
- of documents into it.
- [source,console]
- --------------------------------------------------
- PUT my-index-000001
- {
- "mappings": {
- "properties": {
- "my_dense_vector": {
- "type": "dense_vector",
- "dims": 3
- },
- "status" : {
- "type" : "keyword"
- }
- }
- }
- }
- PUT my-index-000001/_doc/1
- {
- "my_dense_vector": [0.5, 10, 6],
- "status" : "published"
- }
- PUT my-index-000001/_doc/2
- {
- "my_dense_vector": [-0.5, 10, 10],
- "status" : "published"
- }
- POST my-index-000001/_refresh
- --------------------------------------------------
- // TESTSETUP
- The `cosineSimilarity` function calculates the measure of
- cosine similarity between a given query vector and document vectors.
- [source,console]
- --------------------------------------------------
- GET my-index-000001/_search
- {
- "query": {
- "script_score": {
- "query" : {
- "bool" : {
- "filter" : {
- "term" : {
- "status" : "published" <1>
- }
- }
- }
- },
- "script": {
- "source": "cosineSimilarity(params.query_vector, 'my_dense_vector') + 1.0", <2>
- "params": {
- "query_vector": [4, 3.4, -0.2] <3>
- }
- }
- }
- }
- }
- --------------------------------------------------
- <1> To restrict the number of documents on which script score calculation is applied, provide a filter.
- <2> The script adds 1.0 to the cosine similarity to prevent the score from being negative.
- <3> To take advantage of the script optimizations, provide a query vector as a script parameter.
- NOTE: If a document's dense vector field has a number of dimensions
- different from the query's vector, an error will be thrown.
- The `dotProduct` function calculates the measure of
- dot product between a given query vector and document vectors.
- [source,console]
- --------------------------------------------------
- GET my-index-000001/_search
- {
- "query": {
- "script_score": {
- "query" : {
- "bool" : {
- "filter" : {
- "term" : {
- "status" : "published"
- }
- }
- }
- },
- "script": {
- "source": """
- double value = dotProduct(params.query_vector, 'my_dense_vector');
- return sigmoid(1, Math.E, -value); <1>
- """,
- "params": {
- "query_vector": [4, 3.4, -0.2]
- }
- }
- }
- }
- }
- --------------------------------------------------
- <1> Using the standard sigmoid function prevents scores from being negative.
- The `l1norm` function calculates L^1^ distance
- (Manhattan distance) between a given query vector and
- document vectors.
- [source,console]
- --------------------------------------------------
- GET my-index-000001/_search
- {
- "query": {
- "script_score": {
- "query" : {
- "bool" : {
- "filter" : {
- "term" : {
- "status" : "published"
- }
- }
- }
- },
- "script": {
- "source": "1 / (1 + l1norm(params.queryVector, 'my_dense_vector'))", <1>
- "params": {
- "queryVector": [4, 3.4, -0.2]
- }
- }
- }
- }
- }
- --------------------------------------------------
- <1> Unlike `cosineSimilarity` that represent similarity, `l1norm` and
- `l2norm` shown below represent distances or differences. This means, that
- the more similar the vectors are, the lower the scores will be that are
- produced by the `l1norm` and `l2norm` functions.
- Thus, as we need more similar vectors to score higher,
- we reversed the output from `l1norm` and `l2norm`. Also, to avoid
- division by 0 when a document vector matches the query exactly,
- we added `1` in the denominator.
- The `l2norm` function calculates L^2^ distance
- (Euclidean distance) between a given query vector and
- document vectors.
- [source,console]
- --------------------------------------------------
- GET my-index-000001/_search
- {
- "query": {
- "script_score": {
- "query" : {
- "bool" : {
- "filter" : {
- "term" : {
- "status" : "published"
- }
- }
- }
- },
- "script": {
- "source": "1 / (1 + l2norm(params.queryVector, 'my_dense_vector'))",
- "params": {
- "queryVector": [4, 3.4, -0.2]
- }
- }
- }
- }
- }
- --------------------------------------------------
- NOTE: If a document doesn't have a value for a vector field on which
- a vector function is executed, an error will be thrown.
- You can check if a document has a value for the field `my_vector` by
- `doc['my_vector'].size() == 0`. Your overall script can look like this:
- [source,js]
- --------------------------------------------------
- "source": "doc['my_vector'].size() == 0 ? 0 : cosineSimilarity(params.queryVector, 'my_vector')"
- --------------------------------------------------
- // NOTCONSOLE
- The recommended way to access dense vectors is through `cosineSimilarity`,
- `dotProduct`, `l1norm` or `l2norm` functions. But for custom use cases,
- you can access dense vectors's values directly through the following functions:
- - `doc[<field>].vectorValue` – returns a vector's value as an array of floats
- - `doc[<field>].magnitude` – returns a vector's magnitude as a float
- (for vectors created prior to version 7.5 the magnitude is not stored.
- So this function calculates it anew every time it is called).
- For example, the script below implements a cosine similarity using these
- two functions:
- [source,console]
- --------------------------------------------------
- GET my-index-000001/_search
- {
- "query": {
- "script_score": {
- "query" : {
- "bool" : {
- "filter" : {
- "term" : {
- "status" : "published"
- }
- }
- }
- },
- "script": {
- "source": """
- float[] v = doc['my_dense_vector'].vectorValue;
- float vm = doc['my_dense_vector'].magnitude;
- float dotProduct = 0;
- for (int i = 0; i < v.length; i++) {
- dotProduct += v[i] * params.queryVector[i];
- }
- return dotProduct / (vm * (float) params.queryVectorMag);
- """,
- "params": {
- "queryVector": [4, 3.4, -0.2],
- "queryVectorMag": 5.25357
- }
- }
- }
- }
- }
- --------------------------------------------------
|