There are many different algorithms to calculate percentiles. The naive implementation simply stores all the values in a sorted array. To find the 50th percentile, you simply find the value that is at my_array[count(my_array) * 0.5]
.
Clearly, the naive implementation does not scale — the sorted array grows linearly with the number of values in your dataset. To calculate percentiles across potentially billions of values in an Elasticsearch cluster, approximate percentiles are calculated.
The algorithm used by the percentile
metric is called TDigest (introduced by Ted Dunning in Computing Accurate Quantiles using T-Digests).
When using this metric, there are a few guidelines to keep in mind:
q(1-q)
. This means that extreme percentiles (e.g. 99%) are more accurate than less extreme percentiles, such as the medianThe following chart shows the relative error on a uniform distribution depending on the number of collected values and the requested percentile:
It shows how precision is better for extreme percentiles. The reason why error diminishes for large number of values is that the law of large numbers makes the distribution of values more and more uniform and the t-digest tree can do a better job at summarizing it. It would not be the case on more skewed distributions.