| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- // tag::cohere[]
- [source,console]
- ------------------------------------------------------------
- PUT _inference/text_embedding/cohere_embeddings <1>
- {
- "service": "cohere",
- "service_settings": {
- "api_key": "<api_key>", <2>
- "model_id": "embed-english-v3.0", <3>
- "embedding_type": "byte"
- }
- }
- ------------------------------------------------------------
- // TEST[skip:TBD]
- <1> The task type is `text_embedding` in the path and the `inference_id` which
- is the unique identifier of the {infer} endpoint is `cohere_embeddings`.
- <2> The API key of your Cohere account. You can find your API keys in your
- Cohere dashboard under the
- https://dashboard.cohere.com/api-keys[API keys section]. You need to provide
- your API key only once. The <<get-inference-api>> does not return your API
- key.
- <3> The name of the embedding model to use. You can find the list of Cohere
- embedding models https://docs.cohere.com/reference/embed[here].
- NOTE: When using this model the recommended similarity measure to use in the
- `dense_vector` field mapping is `dot_product`. In the case of Cohere models, the
- embeddings are normalized to unit length in which case the `dot_product` and
- the `cosine` measures are equivalent.
- // end::cohere[]
- // tag::openai[]
- [source,console]
- ------------------------------------------------------------
- PUT _inference/text_embedding/openai_embeddings <1>
- {
- "service": "openai",
- "service_settings": {
- "api_key": "<api_key>", <2>
- "model_id": "text-embedding-ada-002" <3>
- }
- }
- ------------------------------------------------------------
- // TEST[skip:TBD]
- <1> The task type is `text_embedding` in the path and the `inference_id` which
- is the unique identifier of the {infer} endpoint is `openai_embeddings`.
- <2> The API key of your OpenAI account. You can find your OpenAI API keys in
- your OpenAI account under the
- https://platform.openai.com/api-keys[API keys section]. You need to provide
- your API key only once. The <<get-inference-api>> does not return your API
- key.
- <3> The name of the embedding model to use. You can find the list of OpenAI
- embedding models
- https://platform.openai.com/docs/guides/embeddings/embedding-models[here].
- NOTE: When using this model the recommended similarity measure to use in the
- `dense_vector` field mapping is `dot_product`. In the case of OpenAI models, the
- embeddings are normalized to unit length in which case the `dot_product` and
- the `cosine` measures are equivalent.
- // end::openai[]
|