| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 | [[mapping-doc-count-field]]=== `_doc_count` data type++++<titleabbrev>_doc_count</titleabbrev>++++Bucket aggregations always return a field named `doc_count` showing the number of documents that were aggregated and partitionedin each bucket. Computation of the value of `doc_count` is very simple. `doc_count` is incremented by 1 for every document collectedin each bucket.While this simple approach is effective when computing aggregations over individual documents, it fails to accurately representdocuments that store pre-aggregated data (such as `histogram` or `aggregate_metric_double` fields), because one summary field mayrepresent multiple documents.To allow for correct computation of the number of documents when working with pre-aggregated data, we have introduced ametadata field type named `_doc_count`. `_doc_count` must always be a positive integer representing the number of documentsaggregated in a single summary field.When field `_doc_count` is added to a document, all bucket aggregations will respect its value and increment the bucket `doc_count`by the value of the field. If a document does not contain any `_doc_count` field, `_doc_count = 1` is implied by default.[IMPORTANT]========* A `_doc_count` field can only store a single positive integer per document. Nested arrays are not allowed.* If a document contains no `_doc_count` fields, aggregators will increment by 1, which is the default behavior.========[[mapping-doc-count-field-example]]==== ExampleThe following <<indices-create-index, create index>> API request creates a new index with the following field mappings:* `my_histogram`, a `histogram` field used to store percentile data* `my_text`, a `keyword` field used to store a title for the histogram[source,console]--------------------------------------------------PUT my_index{  "mappings" : {    "properties" : {      "my_histogram" : {        "type" : "histogram"      },      "my_text" : {        "type" : "keyword"      }    }  }}--------------------------------------------------The following <<docs-index_,index>> API requests store pre-aggregated data fortwo histograms: `histogram_1` and `histogram_2`.[source,console]--------------------------------------------------PUT my_index/_doc/1{  "my_text" : "histogram_1",  "my_histogram" : {      "values" : [0.1, 0.2, 0.3, 0.4, 0.5],      "counts" : [3, 7, 23, 12, 6]   },  "_doc_count": 45 <1>}PUT my_index/_doc/2{  "my_text" : "histogram_2",  "my_histogram" : {      "values" : [0.1, 0.25, 0.35, 0.4, 0.45, 0.5],      "counts" : [8, 17, 8, 7, 6, 2]   },  "_doc_count_": 62 <1>}--------------------------------------------------<1> Field `_doc_count` must be a positive integer storing the number of documents aggregated to produce each histogram.If we run the following <<search-aggregations-bucket-terms-aggregation, terms aggregation>> on `my_index`:[source,console]--------------------------------------------------GET /_search{    "aggs" : {        "histogram_titles" : {            "terms" : { "field" : "my_text" }        }    }}--------------------------------------------------We will get the following response:[source,console-result]--------------------------------------------------{    ...    "aggregations" : {        "histogram_titles" : {            "doc_count_error_upper_bound": 0,            "sum_other_doc_count": 0,            "buckets" : [                {                    "key" : "histogram_2",                    "doc_count" : 62                },                {                    "key" : "histogram_1",                    "doc_count" : 45                }            ]        }    }}--------------------------------------------------// TESTRESPONSE[skip:test not setup]
 |