| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 | [role="xpack"][[stop-trained-model-deployment]]= Stop trained model deployment API[subs="attributes"]++++<titleabbrev>Stop trained model deployment</titleabbrev>++++Stops a trained model deployment.preview::[][[stop-trained-model-deployment-request]]== {api-request-title}`POST _ml/trained_models/<model_id>/deployment/_stop`[[stop-trained-model-deployment-prereq]]== {api-prereq-title}Requires the `manage_ml` cluster privilege. This privilege is included in the `machine_learning_admin` built-in role.[[stop-trained-model-deployment-desc]]== {api-description-title}Deployment is required only for trained models that have a PyTorch `model_type`.[[stop-trained-model-deployment-path-params]]== {api-path-parms-title}`<model_id>`::(Required, string)include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=model-id][[stop-trained-model-deployment-query-params]]== {api-query-parms-title}`allow_no_match`::(Optional, Boolean)include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=allow-no-match-deployments]`force`::(Optional, Boolean) If true, the deployment is stopped even if it is referencedby ingest pipelines. You can't use these pipelines until you restart the modeldeployment.////[role="child_attributes"][[stop-trained-model-deployment-results]]== {api-response-body-title}////////[[stop-trained-models-response-codes]]== {api-response-codes-title}////////[[stop-trained-model-deployment-example]]== {api-examples-title}////
 |