| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446 |
- [role="xpack"]
- [[put-inference-api]]
- === Create {infer} API
- experimental[]
- Creates an {infer} endpoint to perform an {infer} task.
- IMPORTANT: The {infer} APIs enable you to use certain services, such as built-in
- {ml} models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, or
- Hugging Face. For built-in models and models uploaded though
- Eland, the {infer} APIs offer an alternative way to use and manage trained
- models. However, if you do not plan to use the {infer} APIs to use these models
- or if you want to use non-NLP models, use the <<ml-df-trained-models-apis>>.
- [discrete]
- [[put-inference-api-request]]
- ==== {api-request-title}
- `PUT /_inference/<task_type>/<inference_id>`
- [discrete]
- [[put-inference-api-prereqs]]
- ==== {api-prereq-title}
- * Requires the `manage_inference` <<privileges-list-cluster,cluster privilege>>
- (the built-in `inference_admin` role grants this privilege)
- [discrete]
- [[put-inference-api-desc]]
- ==== {api-description-title}
- The create {infer} API enables you to create an {infer} endpoint and configure a
- {ml} model to perform a specific {infer} task.
- The following services are available through the {infer} API:
- * Cohere
- * ELSER
- * Hugging Face
- * OpenAI
- * Elasticsearch (for built-in models and models uploaded through Eland)
- [discrete]
- [[put-inference-api-path-params]]
- ==== {api-path-parms-title}
- `<inference_id>`::
- (Required, string)
- The unique identifier of the {infer} endpoint.
- `<task_type>`::
- (Required, string)
- The type of the {infer} task that the model will perform. Available task types:
- * `sparse_embedding`,
- * `text_embedding`,
- * `completion`
- [discrete]
- [[put-inference-api-request-body]]
- == {api-request-body-title}
- `service`::
- (Required, string)
- The type of service supported for the specified task type.
- Available services:
- * `cohere`: specify the `text_embedding` task type to use the Cohere service.
- * `elser`: specify the `sparse_embedding` task type to use the ELSER service.
- * `hugging_face`: specify the `text_embedding` task type to use the Hugging Face
- service.
- * `openai`: specify the `text_embedding` task type to use the OpenAI service.
- * `elasticsearch`: specify the `text_embedding` task type to use the E5
- built-in model or text embedding models uploaded by Eland.
- `service_settings`::
- (Required, object)
- Settings used to install the {infer} model. These settings are specific to the
- `service` you specified.
- +
- .`service_settings` for the `cohere` service
- [%collapsible%closed]
- =====
- `api_key`:::
- (Required, string)
- A valid API key of your Cohere account. You can find your Cohere API keys or you
- can create a new one
- https://dashboard.cohere.com/api-keys[on the API keys settings page].
- IMPORTANT: You need to provide the API key only once, during the {infer} model
- creation. The <<get-inference-api>> does not retrieve your API key. After
- creating the {infer} model, you cannot change the associated API key. If you
- want to use a different API key, delete the {infer} model and recreate it with
- the same name and the updated API key.
- `embedding_type`::
- (Optional, string)
- Specifies the types of embeddings you want to get back. Defaults to `float`.
- Valid values are:
- * `byte`: use it for signed int8 embeddings (this is a synonym of `int8`).
- * `float`: use it for the default float embeddings.
- * `int8`: use it for signed int8 embeddings.
- `model_id`::
- (Optional, string)
- The name of the model to use for the {infer} task. To review the available
- models, refer to the
- https://docs.cohere.com/reference/embed[Cohere docs]. Defaults to
- `embed-english-v2.0`.
- =====
- +
- .`service_settings` for the `elser` service
- [%collapsible%closed]
- =====
- `num_allocations`:::
- (Required, integer)
- The number of model allocations to create. `num_allocations` must not exceed the
- number of available processors per node divided by the `num_threads`.
- `num_threads`:::
- (Required, integer)
- The number of threads to use by each model allocation. `num_threads` must not
- exceed the number of available processors per node divided by the number of
- allocations. Must be a power of 2. Max allowed value is 32.
- =====
- +
- .`service_settings` for the `hugging_face` service
- [%collapsible%closed]
- =====
- `api_key`:::
- (Required, string)
- A valid access token of your Hugging Face account. You can find your Hugging
- Face access tokens or you can create a new one
- https://huggingface.co/settings/tokens[on the settings page].
- IMPORTANT: You need to provide the API key only once, during the {infer} model
- creation. The <<get-inference-api>> does not retrieve your API key. After
- creating the {infer} model, you cannot change the associated API key. If you
- want to use a different API key, delete the {infer} model and recreate it with
- the same name and the updated API key.
- `url`:::
- (Required, string)
- The URL endpoint to use for the requests.
- =====
- +
- .`service_settings` for the `openai` service
- [%collapsible%closed]
- =====
- `api_key`:::
- (Required, string)
- A valid API key of your OpenAI account. You can find your OpenAI API keys in
- your OpenAI account under the
- https://platform.openai.com/api-keys[API keys section].
- IMPORTANT: You need to provide the API key only once, during the {infer} model
- creation. The <<get-inference-api>> does not retrieve your API key. After
- creating the {infer} model, you cannot change the associated API key. If you
- want to use a different API key, delete the {infer} model and recreate it with
- the same name and the updated API key.
- `model_id`:::
- (Required, string)
- The name of the model to use for the {infer} task. Refer to the
- https://platform.openai.com/docs/guides/embeddings/what-are-embeddings[OpenAI documentation]
- for the list of available text embedding models.
- `organization_id`:::
- (Optional, string)
- The unique identifier of your organization. You can find the Organization ID in
- your OpenAI account under
- https://platform.openai.com/account/organization[**Settings** > **Organizations**].
- `url`:::
- (Optional, string)
- The URL endpoint to use for the requests. Can be changed for testing purposes.
- Defaults to `https://api.openai.com/v1/embeddings`.
- =====
- +
- .`service_settings` for the `elasticsearch` service
- [%collapsible%closed]
- =====
- `model_id`:::
- (Required, string)
- The name of the model to use for the {infer} task. It can be the
- ID of either a built-in model (for example, `.multilingual-e5-small` for E5) or
- a text embedding model already
- {ml-docs}/ml-nlp-import-model.html#ml-nlp-import-script[uploaded through Eland].
- `num_allocations`:::
- (Required, integer)
- The number of model allocations to create. `num_allocations` must not exceed the
- number of available processors per node divided by the `num_threads`.
- `num_threads`:::
- (Required, integer)
- The number of threads to use by each model allocation. `num_threads` must not
- exceed the number of available processors per node divided by the number of
- allocations. Must be a power of 2. Max allowed value is 32.
- =====
- `task_settings`::
- (Optional, object)
- Settings to configure the {infer} task. These settings are specific to the
- `<task_type>` you specified.
- +
- .`task_settings` for the `text_embedding` task type
- [%collapsible%closed]
- =====
- `input_type`:::
- (optional, string)
- For `cohere` service only. Specifies the type of input passed to the model.
- Valid values are:
- * `classification`: use it for embeddings passed through a text classifier.
- * `clusterning`: use it for the embeddings run through a clustering algorithm.
- * `ingest`: use it for storing document embeddings in a vector database.
- * `search`: use it for storing embeddings of search queries run against a
- vector data base to find relevant documents.
- `truncate`:::
- (Optional, string)
- For `cohere` service only. Specifies how the API handles inputs longer than the
- maximum token length. Defaults to `END`. Valid values are:
- * `NONE`: when the input exceeds the maximum input token length an error is
- returned.
- * `START`: when the input exceeds the maximum input token length the start of
- the input is discarded.
- * `END`: when the input exceeds the maximum input token length the end of
- the input is discarded.
- `user`:::
- (optional, string)
- For `openai` service only. Specifies the user issuing the request, which can be used for abuse detection.
- =====
- +
- .`task_settings` for the `completion` task type
- [%collapsible%closed]
- =====
- `user`:::
- (optional, string)
- For `openai` service only. Specifies the user issuing the request, which can be used for abuse detection.
- =====
- [discrete]
- [[put-inference-api-example]]
- ==== {api-examples-title}
- This section contains example API calls for every service type.
- [discrete]
- [[inference-example-cohere]]
- ===== Cohere service
- The following example shows how to create an {infer} endpoint called
- `cohere_embeddings` to perform a `text_embedding` task type.
- [source,console]
- ------------------------------------------------------------
- PUT _inference/text_embedding/cohere-embeddings
- {
- "service": "cohere",
- "service_settings": {
- "api_key": "<api_key>",
- "model_id": "embed-english-light-v3.0",
- "embedding_type": "byte"
- }
- }
- ------------------------------------------------------------
- // TEST[skip:TBD]
- [discrete]
- [[inference-example-e5]]
- ===== E5 via the elasticsearch service
- The following example shows how to create an {infer} endpoint called
- `my-e5-model` to perform a `text_embedding` task type.
- [source,console]
- ------------------------------------------------------------
- PUT _inference/text_embedding/my-e5-model
- {
- "service": "elasticsearch",
- "service_settings": {
- "num_allocations": 1,
- "num_threads": 1,
- "model_id": ".multilingual-e5-small" <1>
- }
- }
- ------------------------------------------------------------
- // TEST[skip:TBD]
- <1> The `model_id` must be the ID of one of the built-in E5 models. Valid values
- are `.multilingual-e5-small` and `.multilingual-e5-small_linux-x86_64`. For
- further details, refer to the {ml-docs}/ml-nlp-e5.html[E5 model documentation].
- [discrete]
- [[inference-example-elser]]
- ===== ELSER service
- The following example shows how to create an {infer} endpoint called
- `my-elser-model` to perform a `sparse_embedding` task type.
- [source,console]
- ------------------------------------------------------------
- PUT _inference/sparse_embedding/my-elser-model
- {
- "service": "elser",
- "service_settings": {
- "num_allocations": 1,
- "num_threads": 1
- }
- }
- ------------------------------------------------------------
- // TEST[skip:TBD]
- Example response:
- [source,console-result]
- ------------------------------------------------------------
- {
- "inference_id": "my-elser-model",
- "task_type": "sparse_embedding",
- "service": "elser",
- "service_settings": {
- "num_allocations": 1,
- "num_threads": 1
- },
- "task_settings": {}
- }
- ------------------------------------------------------------
- // NOTCONSOLE
- [discrete]
- [[inference-example-hugging-face]]
- ===== Hugging Face service
- The following example shows how to create an {infer} endpoint called
- `hugging-face-embeddings` to perform a `text_embedding` task type.
- [source,console]
- ------------------------------------------------------------
- PUT _inference/text_embedding/hugging-face-embeddings
- {
- "service": "hugging_face",
- "service_settings": {
- "api_key": "<access_token>", <1>
- "url": "<url_endpoint>" <2>
- }
- }
- ------------------------------------------------------------
- // TEST[skip:TBD]
- <1> A valid Hugging Face access token. You can find on the
- https://huggingface.co/settings/tokens[settings page of your account].
- <2> The {infer} endpoint URL you created on Hugging Face.
- Create a new {infer} endpoint on
- https://ui.endpoints.huggingface.co/[the Hugging Face endpoint page] to get an
- endpoint URL. Select the model you want to use on the new endpoint creation page
- - for example `intfloat/e5-small-v2` - then select the `Sentence Embeddings`
- task under the Advanced configuration section. Create the endpoint. Copy the URL
- after the endpoint initialization has been finished.
- [discrete]
- [[inference-example-hugging-face-supported-models]]
- The list of supported models for the Hugging Face service:
- * https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2[all-MiniLM-L6-v2]
- * https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2[all-MiniLM-L12-v2]
- * https://huggingface.co/sentence-transformers/all-mpnet-base-v2[all-mpnet-base-v2]
- * https://huggingface.co/intfloat/e5-base-v2[e5-base-v2]
- * https://huggingface.co/intfloat/e5-small-v2[e5-small-v2]
- * https://huggingface.co/intfloat/multilingual-e5-base[multilingual-e5-base]
- * https://huggingface.co/intfloat/multilingual-e5-small[multilingual-e5-small]
- [discrete]
- [[inference-example-eland]]
- ===== Models uploaded by Eland via the elasticsearch service
- The following example shows how to create an {infer} endpoint called
- `my-msmarco-minilm-model` to perform a `text_embedding` task type.
- [source,console]
- ------------------------------------------------------------
- PUT _inference/text_embedding/my-msmarco-minilm-model
- {
- "service": "elasticsearch",
- "service_settings": {
- "num_allocations": 1,
- "num_threads": 1,
- "model_id": "msmarco-MiniLM-L12-cos-v5" <1>
- }
- }
- ------------------------------------------------------------
- // TEST[skip:TBD]
- <1> The `model_id` must be the ID of a text embedding model which has already
- been
- {ml-docs}/ml-nlp-import-model.html#ml-nlp-import-script[uploaded through Eland].
- [discrete]
- [[inference-example-openai]]
- ===== OpenAI service
- The following example shows how to create an {infer} endpoint called
- `openai_embeddings` to perform a `text_embedding` task type.
- [source,console]
- ------------------------------------------------------------
- PUT _inference/text_embedding/openai_embeddings
- {
- "service": "openai",
- "service_settings": {
- "api_key": "<api_key>",
- "model_id": "text-embedding-ada-002"
- }
- }
- ------------------------------------------------------------
- // TEST[skip:TBD]
- The next example shows how to create an {infer} endpoint called
- `openai_completion` to perform a `completion` task type.
- [source,console]
- ------------------------------------------------------------
- PUT _inference/completion/openai_completion
- {
- "service": "openai",
- "service_settings": {
- "api_key": "<api_key>",
- "model_id": "gpt-3.5-turbo"
- }
- }
- ------------------------------------------------------------
- // TEST[skip:TBD]
|