| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 | [role="xpack"][testenv="basic"][[search-aggregations-pipeline-moving-percentiles-aggregation]]=== Moving percentiles aggregation++++<titleabbrev>Moving percentiles</titleabbrev>++++Given an ordered series of <<search-aggregations-metrics-percentile-aggregation, percentiles>>, the Moving Percentile aggregationwill slide a window across those percentiles and allow the user to compute the cumulative percentile.This is conceptually very similar to the <<search-aggregations-pipeline-movfn-aggregation, Moving Function>> pipeline aggregation,except it works on the percentiles sketches instead of the actual buckets values.==== SyntaxA `moving_percentiles` aggregation looks like this in isolation:[source,js]--------------------------------------------------{  "moving_percentiles": {    "buckets_path": "the_percentile",    "window": 10  }}--------------------------------------------------// NOTCONSOLE[[moving-percentiles-params]].`moving_percentiles` Parameters[options="header"]|===|Parameter Name |Description |Required |Default Value|`buckets_path` |Path to the percentile of interest (see <<buckets-path-syntax, `buckets_path` Syntax>> for more details |Required ||`window` |The size of window to "slide" across the histogram. |Required ||`shift` |<<shift-parameter, Shift>> of window position. |Optional | 0|===`moving_percentiles` aggregations must be embedded inside of a `histogram` or `date_histogram` aggregation. They can beembedded like any other metric aggregation:[source,console]--------------------------------------------------POST /_search{  "size": 0,  "aggs": {    "my_date_histo": {                          <1>        "date_histogram": {        "field": "date",        "calendar_interval": "1M"      },      "aggs": {        "the_percentile": {                     <2>            "percentiles": {            "field": "price",            "percents": [ 1.0, 99.0 ]          }        },        "the_movperc": {          "moving_percentiles": {            "buckets_path": "the_percentile",   <3>            "window": 10          }        }      }    }  }}--------------------------------------------------// TEST[setup:sales]<1> A `date_histogram` named "my_date_histo" is constructed on the "timestamp" field, with one-day intervals<2> A `percentile` metric is used to calculate the percentiles of a field.<3> Finally, we specify a `moving_percentiles` aggregation which uses "the_percentile" sketch as its input.Moving percentiles are built by first specifying a `histogram` or `date_histogram` over a field. You then adda percentile metric inside of that histogram. Finally, the `moving_percentiles` is embedded inside the histogram.The `buckets_path` parameter is then used to "point" at the percentiles aggregation inside of the histogram (see<<buckets-path-syntax>> for a description of the syntax for `buckets_path`).And the following may be the response:[source,console-result]--------------------------------------------------{   "took": 11,   "timed_out": false,   "_shards": ...,   "hits": ...,   "aggregations": {      "my_date_histo": {         "buckets": [             {                 "key_as_string": "2015/01/01 00:00:00",                 "key": 1420070400000,                 "doc_count": 3,                 "the_percentile": {                     "values": {                       "1.0": 150.0,                       "99.0": 200.0                     }                 }             },             {                 "key_as_string": "2015/02/01 00:00:00",                 "key": 1422748800000,                 "doc_count": 2,                 "the_percentile": {                     "values": {                       "1.0": 10.0,                       "99.0": 50.0                     }                 },                 "the_movperc": {                   "values": {                     "1.0": 150.0,                     "99.0": 200.0                   }                 }             },             {                 "key_as_string": "2015/03/01 00:00:00",                 "key": 1425168000000,                 "doc_count": 2,                 "the_percentile": {                    "values": {                      "1.0": 175.0,                      "99.0": 200.0                    }                 },                 "the_movperc": {                    "values": {                      "1.0": 10.0,                      "99.0": 200.0                    }                 }             }         ]      }   }}--------------------------------------------------// TESTRESPONSE[s/"took": 11/"took": $body.took/]// TESTRESPONSE[s/"_shards": \.\.\./"_shards": $body._shards/]// TESTRESPONSE[s/"hits": \.\.\./"hits": $body.hits/]The output format of the `moving_percentiles` aggregation is inherited from the format of the referenced<<search-aggregations-metrics-percentile-aggregation,`percentiles`>> aggregation.Moving percentiles pipeline aggregations always run with `skip` gap policy.[[moving-percentiles-shift-parameter]]==== shift parameterBy default (with `shift = 0`), the window that is offered for calculation is the last `n` values excluding the current bucket.Increasing `shift` by 1 moves starting window position by `1` to the right.- To include current bucket to the window, use `shift = 1`.- For center alignment (`n / 2` values before and after the current bucket), use `shift = window / 2`.- For right alignment (`n` values after the current bucket), use `shift = window`.If either of window edges moves outside the borders of data series, the window shrinks to include available values only.
 |