avg-bucket-aggregation.asciidoc 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112
  1. [[search-aggregations-pipeline-avg-bucket-aggregation]]
  2. === Avg Bucket Aggregation
  3. A sibling pipeline aggregation which calculates the (mean) average value of a specified metric in a sibling aggregation.
  4. The specified metric must be numeric and the sibling aggregation must be a multi-bucket aggregation.
  5. ==== Syntax
  6. An `avg_bucket` aggregation looks like this in isolation:
  7. [source,js]
  8. --------------------------------------------------
  9. {
  10. "avg_bucket": {
  11. "buckets_path": "the_sum"
  12. }
  13. }
  14. --------------------------------------------------
  15. // NOTCONSOLE
  16. .`avg_bucket` Parameters
  17. |===
  18. |Parameter Name |Description |Required |Default Value
  19. |`buckets_path` |The path to the buckets we wish to find the average for (see <<buckets-path-syntax>> for more
  20. details) |Required |
  21. |`gap_policy` |The policy to apply when gaps are found in the data (see <<gap-policy>> for more
  22. details) |Optional |`skip`
  23. |`format` |format to apply to the output value of this aggregation |Optional | `null`
  24. |===
  25. The following snippet calculates the average of the total monthly `sales`:
  26. [source,js]
  27. --------------------------------------------------
  28. POST /_search
  29. {
  30. "size": 0,
  31. "aggs": {
  32. "sales_per_month": {
  33. "date_histogram": {
  34. "field": "date",
  35. "interval": "month"
  36. },
  37. "aggs": {
  38. "sales": {
  39. "sum": {
  40. "field": "price"
  41. }
  42. }
  43. }
  44. },
  45. "avg_monthly_sales": {
  46. "avg_bucket": {
  47. "buckets_path": "sales_per_month>sales" <1>
  48. }
  49. }
  50. }
  51. }
  52. --------------------------------------------------
  53. // CONSOLE
  54. // TEST[setup:sales]
  55. <1> `buckets_path` instructs this avg_bucket aggregation that we want the (mean) average value of the `sales` aggregation in the
  56. `sales_per_month` date histogram.
  57. And the following may be the response:
  58. [source,js]
  59. --------------------------------------------------
  60. {
  61. "took": 11,
  62. "timed_out": false,
  63. "_shards": ...,
  64. "hits": ...,
  65. "aggregations": {
  66. "sales_per_month": {
  67. "buckets": [
  68. {
  69. "key_as_string": "2015/01/01 00:00:00",
  70. "key": 1420070400000,
  71. "doc_count": 3,
  72. "sales": {
  73. "value": 550.0
  74. }
  75. },
  76. {
  77. "key_as_string": "2015/02/01 00:00:00",
  78. "key": 1422748800000,
  79. "doc_count": 2,
  80. "sales": {
  81. "value": 60.0
  82. }
  83. },
  84. {
  85. "key_as_string": "2015/03/01 00:00:00",
  86. "key": 1425168000000,
  87. "doc_count": 2,
  88. "sales": {
  89. "value": 375.0
  90. }
  91. }
  92. ]
  93. },
  94. "avg_monthly_sales": {
  95. "value": 328.33333333333333
  96. }
  97. }
  98. }
  99. --------------------------------------------------
  100. // TESTRESPONSE[s/"took": 11/"took": $body.took/]
  101. // TESTRESPONSE[s/"_shards": \.\.\./"_shards": $body._shards/]
  102. // TESTRESPONSE[s/"hits": \.\.\./"hits": $body.hits/]