123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633 |
- [[search-aggregations-pipeline-movfn-aggregation]]
- === Moving Function Aggregation
- Given an ordered series of data, the Moving Function aggregation will slide a window across the data and allow the user to specify a custom
- script that is executed on each window of data. For convenience, a number of common functions are predefined such as min/max, moving averages,
- etc.
- This is conceptually very similar to the <<search-aggregations-pipeline-movavg-aggregation, Moving Average>> pipeline aggregation, except
- it provides more functionality.
- ==== Syntax
- A `moving_fn` aggregation looks like this in isolation:
- [source,js]
- --------------------------------------------------
- {
- "moving_fn": {
- "buckets_path": "the_sum",
- "window": 10,
- "script": "MovingFunctions.min(values)"
- }
- }
- --------------------------------------------------
- // NOTCONSOLE
- .`moving_avg` Parameters
- |===
- |Parameter Name |Description |Required |Default Value
- |`buckets_path` |Path to the metric of interest (see <<buckets-path-syntax, `buckets_path` Syntax>> for more details |Required |
- |`window` |The size of window to "slide" across the histogram. |Required |
- |`script` |The script that should be executed on each window of data |Required |
- |===
- `moving_fn` aggregations must be embedded inside of a `histogram` or `date_histogram` aggregation. They can be
- embedded like any other metric aggregation:
- [source,js]
- --------------------------------------------------
- POST /_search
- {
- "size": 0,
- "aggs": {
- "my_date_histo":{ <1>
- "date_histogram":{
- "field":"date",
- "interval":"1M"
- },
- "aggs":{
- "the_sum":{
- "sum":{ "field": "price" } <2>
- },
- "the_movfn": {
- "moving_fn": {
- "buckets_path": "the_sum", <3>
- "window": 10,
- "script": "MovingFunctions.unweightedAvg(values)"
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[setup:sales]
- <1> A `date_histogram` named "my_date_histo" is constructed on the "timestamp" field, with one-day intervals
- <2> A `sum` metric is used to calculate the sum of a field. This could be any numeric metric (sum, min, max, etc)
- <3> Finally, we specify a `moving_fn` aggregation which uses "the_sum" metric as its input.
- Moving averages are built by first specifying a `histogram` or `date_histogram` over a field. You can then optionally
- add numeric metrics, such as a `sum`, inside of that histogram. Finally, the `moving_fn` is embedded inside the histogram.
- The `buckets_path` parameter is then used to "point" at one of the sibling metrics inside of the histogram (see
- <<buckets-path-syntax>> for a description of the syntax for `buckets_path`.
- An example response from the above aggregation may look like:
- [source,js]
- --------------------------------------------------
- {
- "took": 11,
- "timed_out": false,
- "_shards": ...,
- "hits": ...,
- "aggregations": {
- "my_date_histo": {
- "buckets": [
- {
- "key_as_string": "2015/01/01 00:00:00",
- "key": 1420070400000,
- "doc_count": 3,
- "the_sum": {
- "value": 550.0
- },
- "the_movfn": {
- "value": null
- }
- },
- {
- "key_as_string": "2015/02/01 00:00:00",
- "key": 1422748800000,
- "doc_count": 2,
- "the_sum": {
- "value": 60.0
- },
- "the_movfn": {
- "value": 550.0
- }
- },
- {
- "key_as_string": "2015/03/01 00:00:00",
- "key": 1425168000000,
- "doc_count": 2,
- "the_sum": {
- "value": 375.0
- },
- "the_movfn": {
- "value": 305.0
- }
- }
- ]
- }
- }
- }
- --------------------------------------------------
- // TESTRESPONSE[s/"took": 11/"took": $body.took/]
- // TESTRESPONSE[s/"_shards": \.\.\./"_shards": $body._shards/]
- // TESTRESPONSE[s/"hits": \.\.\./"hits": $body.hits/]
- ==== Custom user scripting
- The Moving Function aggregation allows the user to specify any arbitrary script to define custom logic. The script is invoked each time a
- new window of data is collected. These values are provided to the script in the `values` variable. The script should then perform some
- kind of calculation and emit a single `double` as the result. Emitting `null` is not permitted, although `NaN` and +/- `Inf` are allowed.
- For example, this script will simply return the first value from the window, or `NaN` if no values are available:
- [source,js]
- --------------------------------------------------
- POST /_search
- {
- "size": 0,
- "aggs": {
- "my_date_histo":{
- "date_histogram":{
- "field":"date",
- "interval":"1M"
- },
- "aggs":{
- "the_sum":{
- "sum":{ "field": "price" }
- },
- "the_movavg": {
- "moving_fn": {
- "buckets_path": "the_sum",
- "window": 10,
- "script": "return values.length > 0 ? values[0] : Double.NaN"
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[setup:sales]
- ==== Pre-built Functions
- For convenience, a number of functions have been prebuilt and are available inside the `moving_fn` script context:
- - `max()`
- - `min()`
- - `sum()`
- - `stdDev()`
- - `unweightedAvg()`
- - `linearWeightedAvg()`
- - `ewma()`
- - `holt()`
- - `holtWinters()`
- The functions are available from the `MovingFunctions` namespace. E.g. `MovingFunctions.max()`
- ===== max Function
- This function accepts a collection of doubles and returns the maximum value in that window. `null` and `NaN` values are ignored; the maximum
- is only calculated over the real values. If the window is empty, or all values are `null`/`NaN`, `NaN` is returned as the result.
- .`max(double[] values)` Parameters
- |===
- |Parameter Name |Description
- |`values` |The window of values to find the maximum
- |===
- [source,js]
- --------------------------------------------------
- POST /_search
- {
- "size": 0,
- "aggs": {
- "my_date_histo":{
- "date_histogram":{
- "field":"date",
- "interval":"1M"
- },
- "aggs":{
- "the_sum":{
- "sum":{ "field": "price" }
- },
- "the_moving_max": {
- "moving_fn": {
- "buckets_path": "the_sum",
- "window": 10,
- "script": "MovingFunctions.max(values)"
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[setup:sales]
- ===== min Function
- This function accepts a collection of doubles and returns the minimum value in that window. `null` and `NaN` values are ignored; the minimum
- is only calculated over the real values. If the window is empty, or all values are `null`/`NaN`, `NaN` is returned as the result.
- .`min(double[] values)` Parameters
- |===
- |Parameter Name |Description
- |`values` |The window of values to find the minimum
- |===
- [source,js]
- --------------------------------------------------
- POST /_search
- {
- "size": 0,
- "aggs": {
- "my_date_histo":{
- "date_histogram":{
- "field":"date",
- "interval":"1M"
- },
- "aggs":{
- "the_sum":{
- "sum":{ "field": "price" }
- },
- "the_moving_min": {
- "moving_fn": {
- "buckets_path": "the_sum",
- "window": 10,
- "script": "MovingFunctions.min(values)"
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[setup:sales]
- ===== sum Function
- This function accepts a collection of doubles and returns the sum of the values in that window. `null` and `NaN` values are ignored;
- the sum is only calculated over the real values. If the window is empty, or all values are `null`/`NaN`, `0.0` is returned as the result.
- .`sum(double[] values)` Parameters
- |===
- |Parameter Name |Description
- |`values` |The window of values to find the sum of
- |===
- [source,js]
- --------------------------------------------------
- POST /_search
- {
- "size": 0,
- "aggs": {
- "my_date_histo":{
- "date_histogram":{
- "field":"date",
- "interval":"1M"
- },
- "aggs":{
- "the_sum":{
- "sum":{ "field": "price" }
- },
- "the_moving_sum": {
- "moving_fn": {
- "buckets_path": "the_sum",
- "window": 10,
- "script": "MovingFunctions.sum(values)"
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[setup:sales]
- ===== stdDev Function
- This function accepts a collection of doubles and average, then returns the standard deviation of the values in that window.
- `null` and `NaN` values are ignored; the sum is only calculated over the real values. If the window is empty, or all values are
- `null`/`NaN`, `0.0` is returned as the result.
- .`stdDev(double[] values)` Parameters
- |===
- |Parameter Name |Description
- |`values` |The window of values to find the standard deviation of
- |`avg` |The average of the window
- |===
- [source,js]
- --------------------------------------------------
- POST /_search
- {
- "size": 0,
- "aggs": {
- "my_date_histo":{
- "date_histogram":{
- "field":"date",
- "interval":"1M"
- },
- "aggs":{
- "the_sum":{
- "sum":{ "field": "price" }
- },
- "the_moving_sum": {
- "moving_fn": {
- "buckets_path": "the_sum",
- "window": 10,
- "script": "MovingFunctions.stdDev(values, MovingFunctions.unweightedAvg(values))"
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[setup:sales]
- The `avg` parameter must be provided to the standard deviation function because different styles of averages can be computed on the window
- (simple, linearly weighted, etc). The various moving averages that are detailed below can be used to calculate the average for the
- standard deviation function.
- ===== unweightedAvg Function
- The `unweightedAvg` function calculates the sum of all values in the window, then divides by the size of the window. It is effectively
- a simple arithmetic mean of the window. The simple moving average does not perform any time-dependent weighting, which means
- the values from a `simple` moving average tend to "lag" behind the real data.
- `null` and `NaN` values are ignored; the average is only calculated over the real values. If the window is empty, or all values are
- `null`/`NaN`, `NaN` is returned as the result. This means that the count used in the average calculation is count of non-`null`,non-`NaN`
- values.
- .`unweightedAvg(double[] values)` Parameters
- |===
- |Parameter Name |Description
- |`values` |The window of values to find the sum of
- |===
- [source,js]
- --------------------------------------------------
- POST /_search
- {
- "size": 0,
- "aggs": {
- "my_date_histo":{
- "date_histogram":{
- "field":"date",
- "interval":"1M"
- },
- "aggs":{
- "the_sum":{
- "sum":{ "field": "price" }
- },
- "the_movavg": {
- "moving_fn": {
- "buckets_path": "the_sum",
- "window": 10,
- "script": "MovingFunctions.unweightedAvg(values)"
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[setup:sales]
- ==== linearWeightedAvg Function
- The `linearWeightedAvg` function assigns a linear weighting to points in the series, such that "older" datapoints (e.g. those at
- the beginning of the window) contribute a linearly less amount to the total average. The linear weighting helps reduce
- the "lag" behind the data's mean, since older points have less influence.
- If the window is empty, or all values are `null`/`NaN`, `NaN` is returned as the result.
- .`linearWeightedAvg(double[] values)` Parameters
- |===
- |Parameter Name |Description
- |`values` |The window of values to find the sum of
- |===
- [source,js]
- --------------------------------------------------
- POST /_search
- {
- "size": 0,
- "aggs": {
- "my_date_histo":{
- "date_histogram":{
- "field":"date",
- "interval":"1M"
- },
- "aggs":{
- "the_sum":{
- "sum":{ "field": "price" }
- },
- "the_movavg": {
- "moving_fn": {
- "buckets_path": "the_sum",
- "window": 10,
- "script": "MovingFunctions.linearWeightedAvg(values)"
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[setup:sales]
- ==== ewma Function
- The `ewma` function (aka "single-exponential") is similar to the `linearMovAvg` function,
- except older data-points become exponentially less important,
- rather than linearly less important. The speed at which the importance decays can be controlled with an `alpha`
- setting. Small values make the weight decay slowly, which provides greater smoothing and takes into account a larger
- portion of the window. Larger valuers make the weight decay quickly, which reduces the impact of older values on the
- moving average. This tends to make the moving average track the data more closely but with less smoothing.
- `null` and `NaN` values are ignored; the average is only calculated over the real values. If the window is empty, or all values are
- `null`/`NaN`, `NaN` is returned as the result. This means that the count used in the average calculation is count of non-`null`,non-`NaN`
- values.
- .`ewma(double[] values, double alpha)` Parameters
- |===
- |Parameter Name |Description
- |`values` |The window of values to find the sum of
- |`alpha` |Exponential decay
- |===
- [source,js]
- --------------------------------------------------
- POST /_search
- {
- "size": 0,
- "aggs": {
- "my_date_histo":{
- "date_histogram":{
- "field":"date",
- "interval":"1M"
- },
- "aggs":{
- "the_sum":{
- "sum":{ "field": "price" }
- },
- "the_movavg": {
- "moving_fn": {
- "buckets_path": "the_sum",
- "window": 10,
- "script": "MovingFunctions.ewma(values, 0.3)"
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[setup:sales]
- ==== holt Function
- The `holt` function (aka "double exponential") incorporates a second exponential term which
- tracks the data's trend. Single exponential does not perform well when the data has an underlying linear trend. The
- double exponential model calculates two values internally: a "level" and a "trend".
- The level calculation is similar to `ewma`, and is an exponentially weighted view of the data. The difference is
- that the previously smoothed value is used instead of the raw value, which allows it to stay close to the original series.
- The trend calculation looks at the difference between the current and last value (e.g. the slope, or trend, of the
- smoothed data). The trend value is also exponentially weighted.
- Values are produced by multiplying the level and trend components.
- `null` and `NaN` values are ignored; the average is only calculated over the real values. If the window is empty, or all values are
- `null`/`NaN`, `NaN` is returned as the result. This means that the count used in the average calculation is count of non-`null`,non-`NaN`
- values.
- .`holt(double[] values, double alpha)` Parameters
- |===
- |Parameter Name |Description
- |`values` |The window of values to find the sum of
- |`alpha` |Level decay value
- |`beta` |Trend decay value
- |===
- [source,js]
- --------------------------------------------------
- POST /_search
- {
- "size": 0,
- "aggs": {
- "my_date_histo":{
- "date_histogram":{
- "field":"date",
- "interval":"1M"
- },
- "aggs":{
- "the_sum":{
- "sum":{ "field": "price" }
- },
- "the_movavg": {
- "moving_fn": {
- "buckets_path": "the_sum",
- "window": 10,
- "script": "MovingFunctions.holt(values, 0.3, 0.1)"
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[setup:sales]
- In practice, the `alpha` value behaves very similarly in `holtMovAvg` as `ewmaMovAvg`: small values produce more smoothing
- and more lag, while larger values produce closer tracking and less lag. The value of `beta` is often difficult
- to see. Small values emphasize long-term trends (such as a constant linear trend in the whole series), while larger
- values emphasize short-term trends.
- ==== holtWinters Function
- The `holtWinters` function (aka "triple exponential") incorporates a third exponential term which
- tracks the seasonal aspect of your data. This aggregation therefore smooths based on three components: "level", "trend"
- and "seasonality".
- The level and trend calculation is identical to `holt` The seasonal calculation looks at the difference between
- the current point, and the point one period earlier.
- Holt-Winters requires a little more handholding than the other moving averages. You need to specify the "periodicity"
- of your data: e.g. if your data has cyclic trends every 7 days, you would set `period = 7`. Similarly if there was
- a monthly trend, you would set it to `30`. There is currently no periodicity detection, although that is planned
- for future enhancements.
- `null` and `NaN` values are ignored; the average is only calculated over the real values. If the window is empty, or all values are
- `null`/`NaN`, `NaN` is returned as the result. This means that the count used in the average calculation is count of non-`null`,non-`NaN`
- values.
- .`holtWinters(double[] values, double alpha)` Parameters
- |===
- |Parameter Name |Description
- |`values` |The window of values to find the sum of
- |`alpha` |Level decay value
- |`beta` |Trend decay value
- |`gamma` |Seasonality decay value
- |`period` |The periodicity of the data
- |`multiplicative` |True if you wish to use multiplicative holt-winters, false to use additive
- |===
- [source,js]
- --------------------------------------------------
- POST /_search
- {
- "size": 0,
- "aggs": {
- "my_date_histo":{
- "date_histogram":{
- "field":"date",
- "interval":"1M"
- },
- "aggs":{
- "the_sum":{
- "sum":{ "field": "price" }
- },
- "the_movavg": {
- "moving_fn": {
- "buckets_path": "the_sum",
- "window": 10,
- "script": "if (values.length > 5*2) {MovingFunctions.holtWinters(values, 0.3, 0.1, 0.1, 5, false)}"
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[setup:sales]
- [WARNING]
- ======
- Multiplicative Holt-Winters works by dividing each data point by the seasonal value. This is problematic if any of
- your data is zero, or if there are gaps in the data (since this results in a divid-by-zero). To combat this, the
- `mult` Holt-Winters pads all values by a very small amount (1*10^-10^) so that all values are non-zero. This affects
- the result, but only minimally. If your data is non-zero, or you prefer to see `NaN` when zero's are encountered,
- you can disable this behavior with `pad: false`
- ======
- ===== "Cold Start"
- Unfortunately, due to the nature of Holt-Winters, it requires two periods of data to "bootstrap" the algorithm. This
- means that your `window` must always be *at least* twice the size of your period. An exception will be thrown if it
- isn't. It also means that Holt-Winters will not emit a value for the first `2 * period` buckets; the current algorithm
- does not backcast.
- You'll notice in the above example we have an `if ()` statement checking the size of values. This is checking to make sure
- we have two periods worth of data (`5 * 2`, where 5 is the period specified in the `holtWintersMovAvg` function) before calling
- the holt-winters function.
|