| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 | [[analyzer]]=== `analyzer`The values of <<mapping-index,`analyzed`>> string fields are passed through an<<analysis,analyzer>> to convert the string into a stream of _tokens_ or_terms_.  For instance, the string `"The quick Brown Foxes."` may, dependingon which analyzer is used,  be analyzed to the tokens: `quick`, `brown`,`fox`.  These are the actual terms that are indexed for the field, which makesit possible to search efficiently for individual words _within_  big blobs oftext.This analysis process needs to happen not just at index time, but also atquery time: the query string needs to be passed through the same (or asimilar) analyzer so that the terms that it tries to find are in the sameformat as those that exist in the index.Elasticsearch ships with a number of <<analysis-analyzers,pre-defined analyzers>>,which can be used without further configuration.  It also ships with many<<analysis-charfilters,character filters>>, <<analysis-tokenizers,tokenizers>>,and <<analysis-tokenfilters>> which can be combined to configurecustom analyzers per index.Analyzers can be specified per-query, per-field or per-index. At index time,Elasticsearch will look for an analyzer in this order:* The `analyzer` defined in the field mapping.* An analyzer named `default` in the index settings.* The <<analysis-standard-analyzer,`standard`>> analyzer.At query time, there are a few more layers:* The `analyzer` defined in a <<full-text-queries,full-text query>>.* The `search_analyzer` defined in the field mapping.* The `analyzer` defined in the field mapping.* An analyzer named `default_search` in the index settings.* An analyzer named `default` in the index settings.* The <<analysis-standard-analyzer,`standard`>> analyzer.The easiest way to specify an analyzer for a particular field is to define itin the field mapping, as follows:[source,js]--------------------------------------------------PUT /my_index{  "mappings": {    "my_type": {      "properties": {        "text": { <1>          "type": "text",          "fields": {            "english": { <2>              "type":     "text",              "analyzer": "english"            }          }        }      }    }  }}GET my_index/_analyze <3>{  "field": "text",  "text": "The quick Brown Foxes."}GET my_index/_analyze <4>{  "field": "text.english",  "text": "The quick Brown Foxes."}--------------------------------------------------// CONSOLE<1> The `text` field uses the default `standard` analyzer`.<2> The `text.english` <<multi-fields,multi-field>> uses the `english` analyzer, which removes stop words and applies stemming.<3> This returns the tokens: [ `the`, `quick`, `brown`, `foxes` ].<4> This returns the tokens: [ `quick`, `brown`, `fox` ].[[search-quote-analyzer]]==== `search_quote_analyzer`The `search_quote_analyzer` setting allows you to specify an analyzer for phrases, this is particularly useful when dealing with disablingstop words for phrase queries.To disable stop words for phrases a field utilising three analyzer settings will be required:1. An `analyzer` setting for indexing all terms including stop words2. A `search_analyzer` setting for non-phrase queries that will remove stop words3. A `search_quote_analyzer` setting for phrase queries that will not remove stop words[source,js]--------------------------------------------------PUT my_index{   "settings":{      "analysis":{         "analyzer":{            "my_analyzer":{ <1>               "type":"custom",               "tokenizer":"standard",               "filter":[                  "lowercase"               ]            },            "my_stop_analyzer":{ <2>               "type":"custom",               "tokenizer":"standard",               "filter":[                  "lowercase",                  "english_stop"               ]            }         },         "filter":{            "english_stop":{               "type":"stop",               "stopwords":"_english_"            }         }      }   },   "mappings":{      "my_type":{         "properties":{            "title": {               "type":"text",               "analyzer":"my_analyzer", <3>               "search_analyzer":"my_stop_analyzer", <4>               "search_quote_analyzer":"my_analyzer" <5>            }         }      }   }}--------------------------------------------------// CONSOLE[source,js]--------------------------------------------------PUT my_index/my_type/1{   "title":"The Quick Brown Fox"}PUT my_index/my_type/2{   "title":"A Quick Brown Fox"}GET my_index/my_type/_search{   "query":{      "query_string":{         "query":"\"the quick brown fox\"" <6>      }   }}--------------------------------------------------<1> `my_analyzer` analyzer which tokens all terms including stop words<2> `my_stop_analyzer` analyzer which removes stop words<3> `analyzer` setting that points to the `my_analyzer` analyzer which will be used at index time<4> `search_analyzer` setting that points to the `my_stop_analyzer` and removes stop words for non-phrase queries<5> `search_quote_analyzer` setting that points to the `my_analyzer` analyzer and ensures that stop words are not removed from phrase queries<6> Since the query is wrapped in quotes it is detected as a phrase query therefore the `search_quote_analyzer` kicks in and ensures the stop wordsare not removed from the query. The `my_analyzer` analyzer will then return the following tokens [`the`, `quick`, `brown`, `fox`] which will match oneof the documents. Meanwhile term queries will be analyzed with the `my_stop_analyzer` analyzer which will filter out stop words. So a search for either`The quick brown fox` or `A quick brown fox` will return both documents since both documents contain the following tokens [`quick`, `brown`, `fox`].Without the `search_quote_analyzer` it would not be possible to do exact matches for phrase queries as the stop words from phrase queries would beremoved resulting in both documents matching.
 |