| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 | [[query-dsl-term-query]]=== Term QueryThe `term` query finds documents that contain the *exact* term specifiedin the inverted index.  For instance:[source,js]--------------------------------------------------{    "term" : { "user" : "Kimchy" } <1>}--------------------------------------------------<1> Finds documents which contain the exact term `Kimchy` in the inverted index    of the `user` field.A `boost` parameter can be specified to give this `term` query a higherrelevance score than another query, for instance:[source,js]--------------------------------------------------GET /_search{  "query": {    "bool": {      "should": [        {          "term": {            "status": {              "value": "urgent",              "boost": 2.0 <1>            }          }        },        {          "term": {            "status": "normal" <2>          }        }      ]    }  }}--------------------------------------------------<1> The `urgent` query clause has a boost of `2.0`, meaning it is twice as important    as the query clause for `normal`.<2> The `normal` clause has the default neutral boost of `1.0`..Why doesn't the `term` query match my document?**************************************************String fields can be of type `text` (treated as full text, like the body of anemail), or `keyword` (treated as exact values, like an email address or azip code).  Exact values (like numbers, dates, and keywords) havethe exact value specified in the field added to the inverted index in orderto make them searchable.However, `text` fields are `analyzed`. This means that theirvalues are first passed through an <<analysis,analyzer>> to produce a list ofterms, which are then added to the inverted index.There are many ways to analyze text: the default<<analysis-standard-analyzer,`standard` analyzer>> drops most punctuation,breaks up text into individual words, and lower cases them.    For instance,the `standard` analyzer would turn the string ``Quick Brown Fox!'' into theterms [`quick`, `brown`, `fox`].This analysis process makes it possible to search for individual wordswithin a big block of full text.The `term` query looks for the *exact* term in the field's inverted index --it doesn't know anything about the field's analyzer.  This makes it useful forlooking up values in keyword fields, or in numeric or datefields.  When querying full text fields, use the<<query-dsl-match-query,`match` query>> instead, which understands how the fieldhas been analyzed.To demonstrate, try out the example below.  First, create an index, specifying the field mappings, and index a document:[source,js]--------------------------------------------------PUT my_index{  "mappings": {    "my_type": {      "properties": {        "full_text": {          "type":  "text" <1>        },        "exact_value": {          "type":  "keyword" <2>        }      }    }  }}PUT my_index/my_type/1{  "full_text":   "Quick Foxes!", <3>  "exact_value": "Quick Foxes!"  <4>}--------------------------------------------------// AUTOSENSE<1> The `full_text` field is of type `text` and will be analyzed.<2> The `exact_value` field is of type `keyword` and will NOT be analyzed.<3> The `full_text` inverted index will contain the terms: [`quick`, `foxes`].<4> The `exact_value` inverted index will contain the exact term: [`Quick Foxes!`].Now, compare the results for the `term` query and the `match` query:[source,js]--------------------------------------------------GET my_index/my_type/_search{  "query": {    "term": {      "exact_value": "Quick Foxes!" <1>    }  }}GET my_index/my_type/_search{  "query": {    "term": {      "full_text": "Quick Foxes!" <2>    }  }}GET my_index/my_type/_search{  "query": {    "term": {      "full_text": "foxes" <3>    }  }}GET my_index/my_type/_search{  "query": {    "match": {      "full_text": "Quick Foxes!" <4>    }  }}--------------------------------------------------// AUTOSENSE<1> This query matches because the `exact_value` field contains the exact    term `Quick Foxes!`.<2> This query does not match, because the `full_text` field only contains    the terms `quick` and `foxes`. It does not contain the exact term    `Quick Foxes!`.<3> A `term` query for the term `foxes` matches the `full_text` field.<4> This `match` query on the `full_text` field first analyzes the query string,    then looks for documents containing `quick` or `foxes` or both.**************************************************
 |