ml-df-analytics-apis.asciidoc 1.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. [role="xpack"]
  2. [[ml-df-analytics-apis]]
  3. = {ml-cap} {dfanalytics} APIs
  4. You can use the following APIs to perform {ml} {dfanalytics} activities:
  5. * <<put-dfanalytics,Create {dfanalytics-jobs}>>
  6. * <<delete-dfanalytics,Delete {dfanalytics-jobs}>>
  7. * <<get-dfanalytics,Get {dfanalytics-jobs} info>>
  8. * <<get-dfanalytics-stats,Get {dfanalytics-jobs} statistics>>
  9. * <<evaluate-dfanalytics,Evaluate {dfanalytics}>>
  10. * <<explain-dfanalytics,Explain {dfanalytics}>>
  11. * <<preview-dfanalytics,Preview {dfanalytics}>>
  12. * <<start-dfanalytics,Start {dfanalytics-jobs}>>
  13. * <<stop-dfanalytics,Stop {dfanalytics-jobs}>>
  14. * <<update-dfanalytics,Update {dfanalytics-jobs}>>
  15. You can use the following APIs to perform {infer} operations:
  16. * <<put-trained-models>>
  17. * <<put-trained-model-definition-part>>
  18. * <<put-trained-model-vocabulary>>
  19. * <<put-trained-models-aliases>>
  20. * <<delete-trained-models>>
  21. * <<delete-trained-models-aliases>>
  22. * <<get-trained-models>>
  23. * <<get-trained-models-stats>>
  24. * <<get-trained-model-deployment-stats>>
  25. You can deploy a trained model to make predictions in an ingest pipeline or in
  26. an aggregation. Refer to the following documentation to learn more:
  27. * <<search-aggregations-pipeline-inference-bucket-aggregation,{infer-cap} bucket aggregation>>
  28. * <<inference-processor,{infer-cap} processor>>
  29. * <<infer-trained-model-deployment>>
  30. * <<start-trained-model-deployment>>
  31. * <<stop-trained-model-deployment>>
  32. See also <<ml-apis>>.