| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 | [role="xpack"][testenv="basic"][[search-aggregations-metrics-boxplot-aggregation]]=== Boxplot AggregationA `boxplot` metrics aggregation that computes boxplot of numeric values extracted from the aggregated documents.These values can be extracted either from specific numeric fields in the documents, or be generated by a provided script.The `boxplot` aggregation returns essential information for making a https://en.wikipedia.org/wiki/Box_plot[box plot]: minimum, maximummedian, first quartile (25th percentile)  and third quartile (75th percentile) values.==== SyntaxA `boxplot` aggregation looks like this in isolation:[source,js]--------------------------------------------------{    "boxplot": {        "field": "load_time"    }}--------------------------------------------------// NOTCONSOLELet's look at a boxplot representing load time:[source,console]--------------------------------------------------GET latency/_search{    "size": 0,    "aggs" : {        "load_time_boxplot" : {            "boxplot" : {                "field" : "load_time" <1>            }        }    }}--------------------------------------------------// TEST[setup:latency]<1> The field `load_time` must be a numeric fieldThe response will look like this:[source,console-result]--------------------------------------------------{    ...   "aggregations": {      "load_time_boxplot": {         "min": 0.0,         "max": 990.0,         "q1": 165.0,         "q2": 445.0,         "q3": 725.0      }   }}--------------------------------------------------// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]==== ScriptThe boxplot metric supports scripting.  For example, if our load timesare in milliseconds but we want values calculated in seconds, we could usea script to convert them on-the-fly:[source,console]--------------------------------------------------GET latency/_search{    "size": 0,    "aggs" : {        "load_time_boxplot" : {            "boxplot" : {                "script" : {                    "lang": "painless",                    "source": "doc['load_time'].value / params.timeUnit", <1>                    "params" : {                        "timeUnit" : 1000   <2>                    }                }            }        }    }}--------------------------------------------------// TEST[setup:latency]<1> The `field` parameter is replaced with a `script` parameter, which uses thescript to generate values which percentiles are calculated on<2> Scripting supports parameterized input just like any other scriptThis will interpret the `script` parameter as an `inline` script with the `painless` script language and no script parameters. To use astored script use the following syntax:[source,console]--------------------------------------------------GET latency/_search{    "size": 0,    "aggs" : {        "load_time_boxplot" : {            "boxplot" : {                "script" : {                    "id": "my_script",                    "params": {                        "field": "load_time"                    }                }            }        }    }}--------------------------------------------------// TEST[setup:latency,stored_example_script][[search-aggregations-metrics-boxplot-aggregation-approximation]]==== Boxplot values are (usually) approximateThe algorithm used by the `boxplot` metric is called TDigest (introduced byTed Dunning inhttps://github.com/tdunning/t-digest/blob/master/docs/t-digest-paper/histo.pdf[Computing Accurate Quantiles using T-Digests]).[WARNING]====Boxplot as other percentile aggregations are alsohttps://en.wikipedia.org/wiki/Nondeterministic_algorithm[non-deterministic].This means you can get slightly different results using the same data.====[[search-aggregations-metrics-boxplot-aggregation-compression]]==== CompressionApproximate algorithms must balance memory utilization with estimation accuracy.This balance can be controlled using a `compression` parameter:[source,console]--------------------------------------------------GET latency/_search{    "size": 0,    "aggs" : {        "load_time_boxplot" : {            "boxplot" : {                "field" : "load_time",                "compression" : 200 <1>            }        }    }}--------------------------------------------------// TEST[setup:latency]<1> Compression controls memory usage and approximation errorinclude::percentile-aggregation.asciidoc[tags=t-digest]==== Missing valueThe `missing` parameter defines how documents that are missing a value should be treated.By default they will be ignored but it is also possible to treat them as if theyhad a value.[source,console]--------------------------------------------------GET latency/_search{    "size": 0,    "aggs" : {        "grade_boxplot" : {            "boxplot" : {                "field" : "grade",                "missing": 10 <1>            }        }    }}--------------------------------------------------// TEST[setup:latency]<1> Documents without a value in the `grade` field will fall into the same bucket as documents that have the value `10`.
 |