| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 | [[search-aggregations-metrics-stats-aggregation]]=== Stats AggregationA `multi-value` metrics aggregation that computes stats over numeric values extracted from the aggregated documents. These values can be extracted either from specific numeric fields in the documents, or be generated by a provided script.The stats that are returned consist of: `min`, `max`, `sum`, `count` and `avg`.Assuming the data consists of documents representing exams grades (between 0 and 100) of students[source,console]--------------------------------------------------POST /exams/_search?size=0{  "aggs": {    "grades_stats": { "stats": { "field": "grade" } }  }}--------------------------------------------------// TEST[setup:exams]The above aggregation computes the grades statistics over all documents. The aggregation type is `stats` and the `field` setting defines the numeric field of the documents the stats will be computed on. The above will return the following:[source,console-result]--------------------------------------------------{  ...  "aggregations": {    "grades_stats": {      "count": 2,      "min": 50.0,      "max": 100.0,      "avg": 75.0,      "sum": 150.0    }  }}--------------------------------------------------// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]The name of the aggregation (`grades_stats` above) also serves as the key by which the aggregation result can be retrieved from the returned response.==== ScriptComputing the grades stats based on a script:[source,console]--------------------------------------------------POST /exams/_search?size=0{  "aggs": {    "grades_stats": {      "stats": {        "script": {          "lang": "painless",          "source": "doc['grade'].value"        }      }    }  }}--------------------------------------------------// TEST[setup:exams]This will interpret the `script` parameter as an `inline` script with the `painless` script language and no script parameters. To use a stored script use the following syntax:[source,console]--------------------------------------------------POST /exams/_search?size=0{  "aggs": {    "grades_stats": {      "stats": {        "script": {          "id": "my_script",          "params": {            "field": "grade"          }        }      }    }  }}--------------------------------------------------// TEST[setup:exams,stored_example_script]===== Value ScriptIt turned out that the exam was way above the level of the students and a grade correction needs to be applied. We can use a value script to get the new stats:[source,console]--------------------------------------------------POST /exams/_search?size=0{  "aggs": {    "grades_stats": {      "stats": {        "field": "grade",        "script": {          "lang": "painless",          "source": "_value * params.correction",          "params": {            "correction": 1.2          }        }      }    }  }}--------------------------------------------------// TEST[setup:exams]==== Missing valueThe `missing` parameter defines how documents that are missing a value should be treated.By default they will be ignored but it is also possible to treat them as if theyhad a value.[source,console]--------------------------------------------------POST /exams/_search?size=0{  "aggs": {    "grades_stats": {      "stats": {        "field": "grade",        "missing": 0      <1>      }    }  }}--------------------------------------------------// TEST[setup:exams]<1> Documents without a value in the `grade` field will fall into the same bucket as documents that have the value `0`.
 |