| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213 | [[search-aggregations-metrics-sum-aggregation]]=== Sum AggregationA `single-value` metrics aggregation that sums up numeric values that are extracted from the aggregated documents.These values can be extracted either from specific numeric or <<histogram,histogram>> fields in the documents,or be generated by a provided script.Assuming the data consists of documents representing sales records we can sumthe sale price of all hats with:[source,console]--------------------------------------------------POST /sales/_search?size=0{  "query": {    "constant_score": {      "filter": {        "match": { "type": "hat" }      }    }  },  "aggs": {    "hat_prices": { "sum": { "field": "price" } }  }}--------------------------------------------------// TEST[setup:sales]Resulting in:[source,console-result]--------------------------------------------------{  ...  "aggregations": {    "hat_prices": {      "value": 450.0    }  }}--------------------------------------------------// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]The name of the aggregation (`hat_prices` above) also serves as the key by which the aggregation result can be retrieved from the returned response.==== ScriptWe could also use a script to fetch the sales price:[source,console]--------------------------------------------------POST /sales/_search?size=0{  "query": {    "constant_score": {      "filter": {        "match": { "type": "hat" }      }    }  },  "aggs": {    "hat_prices": {      "sum": {        "script": {          "source": "doc.price.value"        }      }    }  }}--------------------------------------------------// TEST[setup:sales]This will interpret the `script` parameter as an `inline` script with the `painless` script language and no script parameters. To use a stored script use the following syntax:[source,console]--------------------------------------------------POST /sales/_search?size=0{  "query": {    "constant_score": {      "filter": {        "match": { "type": "hat" }      }    }  },  "aggs": {    "hat_prices": {      "sum": {        "script": {          "id": "my_script",          "params": {            "field": "price"          }        }      }    }  }}--------------------------------------------------// TEST[setup:sales,stored_example_script]===== Value ScriptIt is also possible to access the field value from the script using `_value`.For example, this will sum the square of the prices for all hats:[source,console]--------------------------------------------------POST /sales/_search?size=0{  "query": {    "constant_score": {      "filter": {        "match": { "type": "hat" }      }    }  },  "aggs": {    "square_hats": {      "sum": {        "field": "price",        "script": {          "source": "_value * _value"        }      }    }  }}--------------------------------------------------// TEST[setup:sales]==== Missing valueThe `missing` parameter defines how documents that are missing a value shouldbe treated. By default documents missing the value will be ignored but it isalso possible to treat them as if they had a value. For example, this treatsall hat sales without a price as being `100`.[source,console]--------------------------------------------------POST /sales/_search?size=0{  "query": {    "constant_score": {      "filter": {        "match": { "type": "hat" }      }    }  },  "aggs": {    "hat_prices": {      "sum": {        "field": "price",        "missing": 100 <1>      }    }  }}--------------------------------------------------// TEST[setup:sales][[search-aggregations-metrics-sum-aggregation-histogram-fields]]==== Histogram fieldsWhen sum is computed on <<histogram,histogram fields>>, the result of the aggregation is the sum of all elements in the `values`array multiplied by the number in the same position in the `counts` array.For example, for the following index that stores pre-aggregated histograms with latency metrics for different networks:[source,console]--------------------------------------------------PUT metrics_index/_doc/1{  "network.name" : "net-1",  "latency_histo" : {      "values" : [0.1, 0.2, 0.3, 0.4, 0.5], <1>      "counts" : [3, 7, 23, 12, 6] <2>   }}PUT metrics_index/_doc/2{  "network.name" : "net-2",  "latency_histo" : {      "values" :  [0.1, 0.2, 0.3, 0.4, 0.5], <1>      "counts" : [8, 17, 8, 7, 6] <2>   }}POST /metrics_index/_search?size=0{  "aggs" : {    "total_latency" : { "sum" : { "field" : "latency_histo" } }  }}--------------------------------------------------For each histogram field the `sum` aggregation will multiply each number in the `values` array <1> multiplied by its associated countin the `counts` array <2>. Eventually, it will add all values for all histograms and return the following result:[source,console-result]--------------------------------------------------{  ...  "aggregations": {    "total_latency": {      "value": 28.8    }  }}--------------------------------------------------// TESTRESPONSE[skip:test not setup]
 |