123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- [[search-aggregations-metrics-percentile-rank-aggregation]]
- === Percentile Ranks Aggregation
- A `multi-value` metrics aggregation that calculates one or more percentile ranks
- over numeric values extracted from the aggregated documents. These values
- can be extracted either from specific numeric fields in the documents, or
- be generated by a provided script.
- [NOTE]
- ==================================================
- Please see <<search-aggregations-metrics-percentile-aggregation-approximation>>
- and <<search-aggregations-metrics-percentile-aggregation-compression>> for advice
- regarding approximation and memory use of the percentile ranks aggregation
- ==================================================
- Percentile rank show the percentage of observed values which are below certain
- value. For example, if a value is greater than or equal to 95% of the observed values
- it is said to be at the 95th percentile rank.
- Assume your data consists of website load times. You may have a service agreement that
- 95% of page loads completely within 15ms and 99% of page loads complete within 30ms.
- Let's look at a range of percentiles representing load time:
- [source,js]
- --------------------------------------------------
- {
- "aggs" : {
- "load_time_outlier" : {
- "percentile_ranks" : {
- "field" : "load_time", <1>
- "values" : [15, 30]
- }
- }
- }
- }
- --------------------------------------------------
- <1> The field `load_time` must be a numeric field
- The response will look like this:
- [source,js]
- --------------------------------------------------
- {
- ...
- "aggregations": {
- "load_time_outlier": {
- "values" : {
- "15": 92,
- "30": 100
- }
- }
- }
- }
- --------------------------------------------------
- From this information you can determine you are hitting the 99% load time target but not quite
- hitting the 95% load time target
- ==== Keyed Response
- By default the `keyed` flag is set to `true` associates a unique string key with each bucket and returns the ranges as a hash rather than an array. Setting the `keyed` flag to `false` will disable this behavior:
- [source,js]
- --------------------------------------------------
- POST bank/account/_search?size=0
- {
- "aggs": {
- "balance_outlier": {
- "percentile_ranks": {
- "field": "balance",
- "values": [25000, 50000],
- "keyed": false
- }
- }
- }
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[setup:bank]
- Response:
- [source,js]
- --------------------------------------------------
- {
- ...
- "aggregations": {
- "balance_outlier": {
- "values": [
- {
- "key": 25000.0,
- "value": 48.537724935732655
- },
- {
- "key": 50000.0,
- "value": 99.85567010309278
- }
- ]
- }
- }
- }
- --------------------------------------------------
- // TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
- // TESTRESPONSE[s/48.537724935732655/$body.aggregations.balance_outlier.values.0.value/]
- // TESTRESPONSE[s/99.85567010309278/$body.aggregations.balance_outlier.values.1.value/]
- ==== Script
- The percentile rank metric supports scripting. For example, if our load times
- are in milliseconds but we want to specify values in seconds, we could use
- a script to convert them on-the-fly:
- [source,js]
- --------------------------------------------------
- {
- "aggs" : {
- "load_time_outlier" : {
- "percentile_ranks" : {
- "values" : [3, 5],
- "script" : {
- "lang": "painless",
- "inline": "doc['load_time'].value / params.timeUnit", <1>
- "params" : {
- "timeUnit" : 1000 <2>
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- <1> The `field` parameter is replaced with a `script` parameter, which uses the
- script to generate values which percentile ranks are calculated on
- <2> Scripting supports parameterized input just like any other script
- This will interpret the `script` parameter as an `inline` script with the `painless` script language and no script parameters. To use a file script use the following syntax:
- [source,js]
- --------------------------------------------------
- {
- "aggs" : {
- "load_time_outlier" : {
- "percentile_ranks" : {
- "values" : [3, 5],
- "script" : {
- "file": "my_script",
- "params" : {
- "timeUnit" : 1000
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- TIP: for indexed scripts replace the `file` parameter with an `id` parameter.
- ==== HDR Histogram
- experimental[]
- https://github.com/HdrHistogram/HdrHistogram[HDR Histogram] (High Dynamic Range Histogram) is an alternative implementation
- that can be useful when calculating percentile ranks for latency measurements as it can be faster than the t-digest implementation
- with the trade-off of a larger memory footprint. This implementation maintains a fixed worse-case percentage error (specified as a
- number of significant digits). This means that if data is recorded with values from 1 microsecond up to 1 hour (3,600,000,000
- microseconds) in a histogram set to 3 significant digits, it will maintain a value resolution of 1 microsecond for values up to
- 1 millisecond and 3.6 seconds (or better) for the maximum tracked value (1 hour).
- The HDR Histogram can be used by specifying the `method` parameter in the request:
- [source,js]
- --------------------------------------------------
- {
- "aggs" : {
- "load_time_outlier" : {
- "percentile_ranks" : {
- "field" : "load_time",
- "values" : [15, 30],
- "hdr": { <1>
- "number_of_significant_value_digits" : 3 <2>
- }
- }
- }
- }
- }
- --------------------------------------------------
- <1> `hdr` object indicates that HDR Histogram should be used to calculate the percentiles and specific settings for this algorithm can be specified inside the object
- <2> `number_of_significant_value_digits` specifies the resolution of values for the histogram in number of significant digits
- The HDRHistogram only supports positive values and will error if it is passed a negative value. It is also not a good idea to use
- the HDRHistogram if the range of values is unknown as this could lead to high memory usage.
- ==== Missing value
- The `missing` parameter defines how documents that are missing a value should be treated.
- By default they will be ignored but it is also possible to treat them as if they
- had a value.
- [source,js]
- --------------------------------------------------
- {
- "aggs" : {
- "grade_ranks" : {
- "percentile_ranks" : {
- "field" : "grade",
- "missing": 10 <1>
- }
- }
- }
- }
- --------------------------------------------------
- <1> Documents without a value in the `grade` field will fall into the same bucket as documents that have the value `10`.
|