| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771 | [[search-aggregations-bucket-datehistogram-aggregation]]=== Date histogram aggregation++++<titleabbrev>Date histogram</titleabbrev>++++This multi-bucket aggregation is similar to the normal<<search-aggregations-bucket-histogram-aggregation,histogram>>, but it canonly be used with date or date range values. Because dates are represented internally inElasticsearch as long values, it is possible, but not as accurate, to use thenormal `histogram` on dates as well. The main difference in the two APIs isthat here the interval can be specified using date/time expressions. Time-baseddata requires special support because time-based intervals are not always afixed length.Like the histogram, values are rounded *down* into the closest bucket. Forexample, if the interval is a calendar day, `2020-01-03T07:00:01Z` is rounded to`2020-01-03T00:00:00Z`. Values are rounded as follows:[source,java]----bucket_key = Math.floor(value / interval) * interval----[[calendar_and_fixed_intervals]]==== Calendar and fixed intervalsWhen configuring a date histogram aggregation, the interval can be specifiedin two manners: calendar-aware time intervals, and fixed time intervals.Calendar-aware intervals understand that daylight savings changes the lengthof specific days, months have different amounts of days, and leap seconds canbe tacked onto a particular year.Fixed intervals are, by contrast, always multiples of SI units and do not changebased on calendaring context.[[calendar_intervals]]==== Calendar intervalsCalendar-aware intervals are configured with the `calendar_interval` parameter.You can specify calendar intervals using the unit name, such as `month`, or as asingle unit quantity, such as `1M`. For example, `day` and `1d` are equivalent.Multiple quantities, such as `2d`, are not supported.The accepted calendar intervals are:`minute`, `1m` ::All minutes begin at 00 seconds.One minute is the interval between 00 seconds of the first minute and 00seconds of the following minute in the specified time zone, compensating for anyintervening leap seconds, so that the number of minutes and seconds past thehour is the same at the start and end.`hour`, `1h` ::All hours begin at 00 minutes and 00 seconds.One hour (1h) is the interval between 00:00 minutes of the first hour and 00:00minutes of the following hour in the specified time zone, compensating for anyintervening leap seconds, so that the number of minutes and seconds past the houris the same at the start and end.`day`, `1d` ::All days begin at the earliest possible time, which is usually 00:00:00(midnight).One day (1d) is the interval between the start of the day and the start ofthe following day in the specified time zone, compensating for any interveningtime changes.`week`, `1w` ::One week is the interval between the start day_of_week:hour:minute:secondand the same day of the week and time of the following week in the specifiedtime zone.`month`, `1M` ::One month is the interval between the start day of the month and time ofday and the same day of the month and time of the following month in the specifiedtime zone, so that the day of the month and time of day are the same at the startand end.`quarter`, `1q` ::One quarter is the interval between the start day of the month andtime of day and the same day of the month and time of day three months later,so that the day of the month and time of day are the same at the start and end. +`year`, `1y` ::One year is the interval between the start day of the month and time ofday and the same day of the month and time of day the following year in thespecified time zone, so that the date and time are the same at the start and end. +[[calendar_interval_examples]]===== Calendar interval examplesAs an example, here is an aggregation requesting bucket intervals of a month in calendar time:[source,console,id=datehistogram-aggregation-calendar-interval-example]--------------------------------------------------POST /sales/_search?size=0{  "aggs": {    "sales_over_time": {      "date_histogram": {        "field": "date",        "calendar_interval": "month"      }    }  }}--------------------------------------------------// TEST[setup:sales]If you attempt to use multiples of calendar units, the aggregation will fail because onlysingular calendar units are supported:[source,console,id=datehistogram-aggregation-calendar-interval-multiples-example]--------------------------------------------------POST /sales/_search?size=0{  "aggs": {    "sales_over_time": {      "date_histogram": {        "field": "date",        "calendar_interval": "2d"      }    }  }}--------------------------------------------------// TEST[setup:sales]// TEST[catch:bad_request][source,js]--------------------------------------------------{  "error" : {    "root_cause" : [...],    "type" : "x_content_parse_exception",    "reason" : "[1:82] [date_histogram] failed to parse field [calendar_interval]",    "caused_by" : {      "type" : "illegal_argument_exception",      "reason" : "The supplied interval [2d] could not be parsed as a calendar interval.",      "stack_trace" : "java.lang.IllegalArgumentException: The supplied interval [2d] could not be parsed as a calendar interval."    }  }}--------------------------------------------------// NOTCONSOLE[[fixed_intervals]]==== Fixed intervalsFixed intervals are configured with the `fixed_interval` parameter.In contrast to calendar-aware intervals, fixed intervals are a fixed number of SIunits and never deviate, regardless of where they fall on the calendar. One secondis always composed of `1000ms`. This allows fixed intervals to be specified inany multiple of the supported units.However, it means fixed intervals cannot express other units such as months,since the duration of a month is not a fixed quantity. Attempting to specifya calendar interval like month or quarter will throw an exception.The accepted units for fixed intervals are:milliseconds (`ms`) ::A single millisecond. This is a very, very small interval.seconds (`s`) ::Defined as 1000 milliseconds each.minutes (`m`) ::Defined as 60 seconds each (60,000 milliseconds).All minutes begin at 00 seconds.hours (`h`) ::Defined as 60 minutes each (3,600,000 milliseconds).All hours begin at 00 minutes and 00 seconds.days (`d`) ::Defined as 24 hours (86,400,000 milliseconds).All days begin at the earliest possible time, which is usually 00:00:00(midnight).[[fixed_interval_examples]]===== Fixed interval examplesIf we try to recreate the "month" `calendar_interval` from earlier, we can approximate that with30 fixed days:[source,console,id=datehistogram-aggregation-fixed-interval-example]--------------------------------------------------POST /sales/_search?size=0{  "aggs": {    "sales_over_time": {      "date_histogram": {        "field": "date",        "fixed_interval": "30d"      }    }  }}--------------------------------------------------// TEST[setup:sales]But if we try to use a calendar unit that is not supported, such as weeks, we'll get an exception:[source,console,id=datehistogram-aggregation-fixed-interval-unsupported-example]--------------------------------------------------POST /sales/_search?size=0{  "aggs": {    "sales_over_time": {      "date_histogram": {        "field": "date",        "fixed_interval": "2w"      }    }  }}--------------------------------------------------// TEST[setup:sales]// TEST[catch:bad_request][source,js]--------------------------------------------------{  "error" : {    "root_cause" : [...],    "type" : "x_content_parse_exception",    "reason" : "[1:82] [date_histogram] failed to parse field [fixed_interval]",    "caused_by" : {      "type" : "illegal_argument_exception",      "reason" : "failed to parse setting [date_histogram.fixedInterval] with value [2w] as a time value: unit is missing or unrecognized",      "stack_trace" : "java.lang.IllegalArgumentException: failed to parse setting [date_histogram.fixedInterval] with value [2w] as a time value: unit is missing or unrecognized"    }  }}--------------------------------------------------// NOTCONSOLE[[datehistogram-aggregation-notes]]==== Date histogram usage notesIn all cases, when the specified end time does not exist, the actual end time isthe closest available time after the specified end.Widely distributed applications must also consider vagaries such as countries thatstart and stop daylight savings time at 12:01 A.M., so end up with one minute ofSunday followed by an additional 59 minutes of Saturday once a year, and countriesthat decide to move across the international date line. Situations likethat can make irregular time zone offsets seem easy.As always, rigorous testing, especially around time-change events, will ensurethat your time interval specification iswhat you intend it to be.WARNING: To avoid unexpected results, all connected servers and clients mustsync to a reliable network time service.NOTE: Fractional time values are not supported, but you can address this byshifting to another time unit (e.g., `1.5h` could instead be specified as `90m`).NOTE: You can also specify time values using abbreviations supported by<<time-units,time units>> parsing.[[datehistogram-aggregation-keys]]==== KeysInternally, a date is represented as a 64 bit number representing a timestampin milliseconds-since-the-epoch (01/01/1970 midnight UTC). These timestamps arereturned as the ++key++ name of the bucket. The `key_as_string` is the sametimestamp converted to a formatteddate string using the `format` parameter specification:TIP: If you don't specify `format`, the first date<<mapping-date-format,format>> specified in the field mapping is used.[source,console,id=datehistogram-aggregation-format-example]--------------------------------------------------POST /sales/_search?size=0{  "aggs": {    "sales_over_time": {      "date_histogram": {        "field": "date",        "calendar_interval": "1M",        "format": "yyyy-MM-dd" <1>      }    }  }}--------------------------------------------------// TEST[setup:sales]<1> Supports expressive date <<date-format-pattern,format pattern>>Response:[source,console-result]--------------------------------------------------{  ...  "aggregations": {    "sales_over_time": {      "buckets": [        {          "key_as_string": "2015-01-01",          "key": 1420070400000,          "doc_count": 3        },        {          "key_as_string": "2015-02-01",          "key": 1422748800000,          "doc_count": 2        },        {          "key_as_string": "2015-03-01",          "key": 1425168000000,          "doc_count": 2        }      ]    }  }}--------------------------------------------------// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/][[datehistogram-aggregation-time-zone]]==== Time zone{es} stores date-times in Coordinated Universal Time (UTC). By default, all bucketing androunding is also done in UTC. Use the `time_zone` parameter to indicatethat bucketing should use a different time zone.For example, if the interval is a calendar day and the time zone is`America/New_York` then `2020-01-03T01:00:01Z` is :# Converted to `2020-01-02T18:00:01`# Rounded down to `2020-01-02T00:00:00`# Then converted back to UTC to produce `2020-01-02T05:00:00:00Z`# Finally, when the bucket is turned into a string key it is printed in  `America/New_York` so it'll display as `"2020-01-02T00:00:00"`.It looks like:[source,java]----bucket_key = localToUtc(Math.floor(utcToLocal(value) / interval) * interval))----You can specify time zones as an ISO 8601 UTC offset (e.g. `+01:00` or`-08:00`) or as an IANA time zone ID,such as `America/Los_Angeles`.Consider the following example:[source,console,id=datehistogram-aggregation-timezone-example]---------------------------------PUT my-index-000001/_doc/1?refresh{  "date": "2015-10-01T00:30:00Z"}PUT my-index-000001/_doc/2?refresh{  "date": "2015-10-01T01:30:00Z"}GET my-index-000001/_search?size=0{  "aggs": {    "by_day": {      "date_histogram": {        "field":     "date",        "calendar_interval":  "day"      }    }  }}---------------------------------If you don't specify a time zone, UTC is used. This would result in both of thesedocuments being placed into the same day bucket, which starts at midnight UTCon 1 October 2015:[source,console-result]---------------------------------{  ...  "aggregations": {    "by_day": {      "buckets": [        {          "key_as_string": "2015-10-01T00:00:00.000Z",          "key":           1443657600000,          "doc_count":     2        }      ]    }  }}---------------------------------// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]If you specify a `time_zone` of `-01:00`, midnight in that time zone is one hourbefore midnight UTC:[source,console]---------------------------------GET my-index-000001/_search?size=0{  "aggs": {    "by_day": {      "date_histogram": {        "field":     "date",        "calendar_interval":  "day",        "time_zone": "-01:00"      }    }  }}---------------------------------// TEST[continued]Now the first document falls into the bucket for 30 September 2015, while thesecond document falls into the bucket for 1 October 2015:[source,console-result]---------------------------------{  ...  "aggregations": {    "by_day": {      "buckets": [        {          "key_as_string": "2015-09-30T00:00:00.000-01:00", <1>          "key": 1443574800000,          "doc_count": 1        },        {          "key_as_string": "2015-10-01T00:00:00.000-01:00", <1>          "key": 1443661200000,          "doc_count": 1        }      ]    }  }}---------------------------------// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]<1> The `key_as_string` value represents midnight on each day    in the specified time zone.WARNING: Many time zones shift their clocks for daylight savings time. Bucketsclose to the moment when those changes happen can have slightly different sizesthan you would expect from the `calendar_interval` or `fixed_interval`.For example, consider a DST start in the `CET` time zone: on 27 March 2016 at 2am,clocks were turned forward 1 hour to 3am local time. If you use `day` as the`calendar_interval`, the bucket covering that day will only hold data for 23hours instead of the usual 24 hours for other buckets. The same is true forshorter intervals, like a `fixed_interval` of `12h`, where you'll have only a 11hbucket on the morning of 27 March when the DST shift happens.[[search-aggregations-bucket-datehistogram-offset]]==== Offset// tag::offset-explanation[]Use the `offset` parameter to change the start value of each bucket by thespecified positive (`+`) or negative offset (`-`) duration, such as `1h` foran hour, or `1d` for a day. See <<time-units>> for more possible timeduration options.For example, when using an interval of `day`, each bucket runs from midnightto midnight. Setting the `offset` parameter to `+6h` changes each bucketto run from 6am to 6am:// end::offset-explanation[][source,console,id=datehistogram-aggregation-offset-example]-----------------------------PUT my-index-000001/_doc/1?refresh{  "date": "2015-10-01T05:30:00Z"}PUT my-index-000001/_doc/2?refresh{  "date": "2015-10-01T06:30:00Z"}GET my-index-000001/_search?size=0{  "aggs": {    "by_day": {      "date_histogram": {        "field":     "date",        "calendar_interval":  "day",        "offset":    "+6h"      }    }  }}-----------------------------// tag::offset-result-intro[]Instead of a single bucket starting at midnight, the above request groups thedocuments into buckets starting at 6am:// end::offset-result-intro[][source,console-result]-----------------------------{  ...  "aggregations": {    "by_day": {      "buckets": [        {          "key_as_string": "2015-09-30T06:00:00.000Z",          "key": 1443592800000,          "doc_count": 1        },        {          "key_as_string": "2015-10-01T06:00:00.000Z",          "key": 1443679200000,          "doc_count": 1        }      ]    }  }}-----------------------------// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]// tag::offset-note[]NOTE: The start `offset` of each bucket is calculated after `time_zone`adjustments have been made.// end::offset-note[][[date-histogram-keyed-response]]==== Keyed ResponseSetting the `keyed` flag to `true` associates a unique string key with eachbucket and returns the ranges as a hash rather than an array:[source,console,id=datehistogram-aggregation-keyed-example]--------------------------------------------------POST /sales/_search?size=0{  "aggs": {    "sales_over_time": {      "date_histogram": {        "field": "date",        "calendar_interval": "1M",        "format": "yyyy-MM-dd",        "keyed": true      }    }  }}--------------------------------------------------// TEST[setup:sales]Response:[source,console-result]--------------------------------------------------{  ...  "aggregations": {    "sales_over_time": {      "buckets": {        "2015-01-01": {          "key_as_string": "2015-01-01",          "key": 1420070400000,          "doc_count": 3        },        "2015-02-01": {          "key_as_string": "2015-02-01",          "key": 1422748800000,          "doc_count": 2        },        "2015-03-01": {          "key_as_string": "2015-03-01",          "key": 1425168000000,          "doc_count": 2        }      }    }  }}--------------------------------------------------// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/][[date-histogram-scripts]]==== ScriptsIf the data in your documents doesn't exactly match what you'd like to aggregate,use a <<runtime,runtime field>> . For example, if the revenuefor promoted sales should be recognized a day after the sale date:[source,console,id=datehistogram-aggregation-runtime-field]----POST /sales/_search?size=0{  "runtime_mappings": {    "date.promoted_is_tomorrow": {      "type": "date",      "script": """        long date = doc['date'].value.toInstant().toEpochMilli();        if (doc['promoted'].value) {          date += 86400;        }        emit(date);      """    }  },  "aggs": {    "sales_over_time": {      "date_histogram": {        "field": "date.promoted_is_tomorrow",        "calendar_interval": "1M"      }    }  }}----// TEST[setup:sales]////[source,console-result]----{  ...  "aggregations": {    "sales_over_time": {      "buckets": [        {          "key_as_string": "2015-01-01T00:00:00.000Z",          "key": 1420070400000,          "doc_count": 3        },        {          "key_as_string": "2015-02-01T00:00:00.000Z",          "key": 1422748800000,          "doc_count": 2        },        {          "key_as_string": "2015-03-01T00:00:00.000Z",          "key": 1425168000000,          "doc_count": 2        }      ]    }  }}----// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]////[[date-histogram-params]]==== ParametersYou can control the order of the returnedbuckets using the `order`settings and filter the returned buckets based on a `min_doc_count` setting(by default all buckets between the firstbucket that matches documents and the last one are returned). This histogramalso supports the `extended_bounds`setting, which enables extending the bounds of the histogram beyond the dataitself, and `hard_bounds` that limits the histogram to specified bounds.For more information, see<<search-aggregations-bucket-histogram-aggregation-extended-bounds,`Extended Bounds`>> and<<search-aggregations-bucket-histogram-aggregation-hard-bounds,`Hard Bounds`>>.[[date-histogram-missing-value]]===== Missing valueThe `missing` parameter defines how to treat documents that are missing a value.By default, they are ignored, but it is also possible to treat them as if theyhave a value.[source,console,id=datehistogram-aggregation-missing-example]--------------------------------------------------POST /sales/_search?size=0{  "aggs": {    "sale_date": {      "date_histogram": {        "field": "date",        "calendar_interval": "year",        "missing": "2000/01/01" <1>      }    }  }}--------------------------------------------------// TEST[setup:sales]<1> Documents without a value in the `publish_date` field will fall into thesame bucket as documents that have the value `2000-01-01`.[[date-histogram-order]]===== OrderBy default the returned buckets are sorted by their `key` ascending, but you cancontrol the order usingthe `order` setting. This setting supports the same `order` functionality as<<search-aggregations-bucket-terms-aggregation-order,`Terms Aggregation`>>.[[date-histogram-aggregate-scripts]]===== Using a script to aggregate by day of the weekWhen you need to aggregate the results by day of the week, run a `terms`aggregation on a <<runtime,runtime field>> that returns the day of the week:[source,console,id=datehistogram-aggregation-day-of-week-runtime-field]----POST /sales/_search?size=0{  "runtime_mappings": {    "date.day_of_week": {      "type": "keyword",      "script": "emit(doc['date'].value.dayOfWeekEnum.getDisplayName(TextStyle.FULL, Locale.ROOT))"    }  },  "aggs": {    "day_of_week": {      "terms": { "field": "date.day_of_week" }    }  }}----// TEST[setup:sales]Response:[source,console-result]----{  ...  "aggregations": {    "day_of_week": {      "doc_count_error_upper_bound": 0,      "sum_other_doc_count": 0,      "buckets": [        {          "key": "Sunday",          "doc_count": 4        },        {          "key": "Thursday",          "doc_count": 3        }      ]    }  }}----// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]The response will contain all the buckets having the relative day ofthe week as key : 1 for Monday, 2 for Tuesday... 7 for Sunday.
 |