delete-trained-models.asciidoc 1.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667
  1. [role="xpack"]
  2. [[delete-trained-models]]
  3. = Delete trained models API
  4. [subs="attributes"]
  5. ++++
  6. <titleabbrev>Delete trained models</titleabbrev>
  7. ++++
  8. Deletes an existing trained {infer} model.
  9. [[ml-delete-trained-models-request]]
  10. == {api-request-title}
  11. `DELETE _ml/trained_models/<model_id>`
  12. [[ml-delete-trained-models-prereq]]
  13. == {api-prereq-title}
  14. Requires the `manage_ml` cluster privilege. This privilege is included in the
  15. `machine_learning_admin` built-in role.
  16. [[ml-delete-trained-models-path-params]]
  17. == {api-path-parms-title}
  18. `<model_id>`::
  19. (Optional, string)
  20. include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=model-id]
  21. [[ml-delete-trained-models-query-parms]]
  22. == {api-query-parms-title}
  23. `force`::
  24. (Optional, Boolean) Use to forcefully delete a trained model that is referenced
  25. by ingest pipelines or has a started deployment.
  26. [[ml-delete-trained-models-response-codes]]
  27. == {api-response-codes-title}
  28. `409`::
  29. The code indicates that the trained model is referenced by an ingest pipeline
  30. and cannot be deleted.
  31. [[ml-delete-trained-models-example]]
  32. == {api-examples-title}
  33. The following example deletes the `regression-job-one-1574775307356` trained
  34. model:
  35. [source,console]
  36. --------------------------------------------------
  37. DELETE _ml/trained_models/regression-job-one-1574775307356
  38. --------------------------------------------------
  39. // TEST[skip:TBD]
  40. The API returns the following result:
  41. [source,console-result]
  42. ----
  43. {
  44. "acknowledged" : true
  45. }
  46. ----