123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- [role="xpack"]
- [[start-trained-model-deployment]]
- = Start trained model deployment API
- [subs="attributes"]
- ++++
- <titleabbrev>Start trained model deployment</titleabbrev>
- ++++
- experimental::[]
- Starts a new trained model deployment.
- [[start-trained-model-deployment-request]]
- == {api-request-title}
- `POST _ml/trained_models/<model_id>/deployment/_start`
- [[start-trained-model-deployment-prereq]]
- == {api-prereq-title}
- Requires the `manage_ml` cluster privilege. This privilege is included in the
- `machine_learning_admin` built-in role.
- [[start-trained-model-deployment-desc]]
- == {api-description-title}
- Currently only `pytorch` models are supported for deployment. When deployed,
- the model attempts allocation to every machine learning node.
- [[start-trained-model-deployment-path-params]]
- == {api-path-parms-title}
- `<model_id>`::
- (Required, string)
- include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=model-id]
- [[start-trained-model-deployment-query-params]]
- == {api-query-parms-title}
- `inference_threads`::
- (Optional, integer)
- Sets the number of threads used by the inference process. This generally increases
- the inference speed. The inference process is a compute-bound process; any number
- greater than the number of available CPU cores on the machine does not increase the
- inference speed.
- Defaults to 1.
- `model_threads`::
- (Optional, integer)
- Indicates how many threads are used when sending inference requests to
- the model. Increasing this value generally increases the throughput. Defaults to
- 1.
- `queue_capacity`::
- (Optional, integer)
- Controls how many inference requests are allowed in the queue at a time. Once the
- number of requests exceeds this value, new requests are rejected with a 429 error.
- Defaults to 1024.
- `timeout`::
- (Optional, time)
- Controls the amount of time to wait for the model to deploy. Defaults
- to 20 seconds.
- `wait_for`::
- (Optional, string)
- Specifies the allocation status to wait for before returning. Defaults to
- `started`. The value `starting` indicates deployment is starting but not yet on
- any node. The value `started` indicates the model has started on at least one
- node. The value `fully_allocated` indicates the deployment has started on all
- valid nodes.
- [[start-trained-model-deployment-example]]
- == {api-examples-title}
- The following example starts a new deployment for a
- `elastic__distilbert-base-uncased-finetuned-conll03-english` trained model:
- [source,console]
- --------------------------------------------------
- POST _ml/trained_models/elastic__distilbert-base-uncased-finetuned-conll03-english/deployment/_start?wait_for=started&timeout=1m
- --------------------------------------------------
- // TEST[skip:TBD]
- The API returns the following results:
- [source,console-result]
- ----
- {
- "allocation": {
- "task_parameters": {
- "model_id": "elastic__distilbert-base-uncased-finetuned-conll03-english",
- "model_bytes": 265632637
- },
- "routing_table": {
- "uckeG3R8TLe2MMNBQ6AGrw": {
- "routing_state": "started",
- "reason": ""
- }
- },
- "allocation_state": "started",
- "start_time": "2021-11-02T11:50:34.766591Z"
- }
- }
- ----
|