multi-match-query.asciidoc 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545
  1. [[query-dsl-multi-match-query]]
  2. === Multi-match query
  3. ++++
  4. <titleabbrev>Multi-match</titleabbrev>
  5. ++++
  6. The `multi_match` query builds on the <<query-dsl-match-query,`match` query>>
  7. to allow multi-field queries:
  8. [source,console]
  9. --------------------------------------------------
  10. GET /_search
  11. {
  12. "query": {
  13. "multi_match" : {
  14. "query": "this is a test", <1>
  15. "fields": [ "subject", "message" ] <2>
  16. }
  17. }
  18. }
  19. --------------------------------------------------
  20. <1> The query string.
  21. <2> The fields to be queried.
  22. [discrete]
  23. [[field-boost]]
  24. ==== `fields` and per-field boosting
  25. Fields can be specified with wildcards, eg:
  26. [source,console]
  27. --------------------------------------------------
  28. GET /_search
  29. {
  30. "query": {
  31. "multi_match" : {
  32. "query": "Will Smith",
  33. "fields": [ "title", "*_name" ] <1>
  34. }
  35. }
  36. }
  37. --------------------------------------------------
  38. <1> Query the `title`, `first_name` and `last_name` fields.
  39. Individual fields can be boosted with the caret (`^`) notation:
  40. [source,console]
  41. --------------------------------------------------
  42. GET /_search
  43. {
  44. "query": {
  45. "multi_match" : {
  46. "query" : "this is a test",
  47. "fields" : [ "subject^3", "message" ] <1>
  48. }
  49. }
  50. }
  51. --------------------------------------------------
  52. <1> The `subject` field is three times as important as the `message` field.
  53. If no `fields` are provided, the `multi_match` query defaults to the `index.query.default_field`
  54. index settings, which in turn defaults to `*`. `*` extracts all fields in the mapping that
  55. are eligible to term queries and filters the metadata fields. All extracted fields are then
  56. combined to build a query.
  57. WARNING: There is a limit on the number of fields that can be queried
  58. at once. It is defined by the `indices.query.bool.max_clause_count` <<search-settings>>
  59. which defaults to 1024.
  60. [[multi-match-types]]
  61. [discrete]
  62. ==== Types of `multi_match` query:
  63. The way the `multi_match` query is executed internally depends on the `type`
  64. parameter, which can be set to:
  65. [horizontal]
  66. `best_fields`:: (*default*) Finds documents which match any field, but
  67. uses the `_score` from the best field. See <<type-best-fields>>.
  68. `most_fields`:: Finds documents which match any field and combines
  69. the `_score` from each field. See <<type-most-fields>>.
  70. `cross_fields`:: Treats fields with the same `analyzer` as though they
  71. were one big field. Looks for each word in *any*
  72. field. See <<type-cross-fields>>.
  73. `phrase`:: Runs a `match_phrase` query on each field and uses the `_score`
  74. from the best field. See <<type-phrase>>.
  75. `phrase_prefix`:: Runs a `match_phrase_prefix` query on each field and uses
  76. the `_score` from the best field. See <<type-phrase>>.
  77. `bool_prefix`:: Creates a `match_bool_prefix` query on each field and
  78. combines the `_score` from each field. See
  79. <<type-bool-prefix>>.
  80. [[type-best-fields]]
  81. ==== `best_fields`
  82. The `best_fields` type is most useful when you are searching for multiple
  83. words best found in the same field. For instance ``brown fox'' in a single
  84. field is more meaningful than ``brown'' in one field and ``fox'' in the other.
  85. The `best_fields` type generates a <<query-dsl-match-query,`match` query>> for
  86. each field and wraps them in a <<query-dsl-dis-max-query,`dis_max`>> query, to
  87. find the single best matching field. For instance, this query:
  88. [source,console]
  89. --------------------------------------------------
  90. GET /_search
  91. {
  92. "query": {
  93. "multi_match" : {
  94. "query": "brown fox",
  95. "type": "best_fields",
  96. "fields": [ "subject", "message" ],
  97. "tie_breaker": 0.3
  98. }
  99. }
  100. }
  101. --------------------------------------------------
  102. would be executed as:
  103. [source,console]
  104. --------------------------------------------------
  105. GET /_search
  106. {
  107. "query": {
  108. "dis_max": {
  109. "queries": [
  110. { "match": { "subject": "brown fox" }},
  111. { "match": { "message": "brown fox" }}
  112. ],
  113. "tie_breaker": 0.3
  114. }
  115. }
  116. }
  117. --------------------------------------------------
  118. Normally the `best_fields` type uses the score of the *single* best matching
  119. field, but if `tie_breaker` is specified, then it calculates the score as
  120. follows:
  121. * the score from the best matching field
  122. * plus `tie_breaker * _score` for all other matching fields
  123. Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
  124. `fuzziness`, `lenient`, `prefix_length`, `max_expansions`, `rewrite`, `zero_terms_query`,
  125. `auto_generate_synonyms_phrase_query` and `fuzzy_transpositions`,
  126. as explained in <<query-dsl-match-query, match query>>.
  127. [IMPORTANT]
  128. [[operator-min]]
  129. .`operator` and `minimum_should_match`
  130. ===================================================
  131. The `best_fields` and `most_fields` types are _field-centric_ -- they generate
  132. a `match` query *per field*. This means that the `operator` and
  133. `minimum_should_match` parameters are applied to each field individually,
  134. which is probably not what you want.
  135. Take this query for example:
  136. [source,console]
  137. --------------------------------------------------
  138. GET /_search
  139. {
  140. "query": {
  141. "multi_match" : {
  142. "query": "Will Smith",
  143. "type": "best_fields",
  144. "fields": [ "first_name", "last_name" ],
  145. "operator": "and" <1>
  146. }
  147. }
  148. }
  149. --------------------------------------------------
  150. <1> All terms must be present.
  151. This query is executed as:
  152. (+first_name:will +first_name:smith)
  153. | (+last_name:will +last_name:smith)
  154. In other words, *all terms* must be present *in a single field* for a document
  155. to match.
  156. See <<type-cross-fields>> for a better solution.
  157. ===================================================
  158. [[type-most-fields]]
  159. ==== `most_fields`
  160. The `most_fields` type is most useful when querying multiple fields that
  161. contain the same text analyzed in different ways. For instance, the main
  162. field may contain synonyms, stemming and terms without diacritics. A second
  163. field may contain the original terms, and a third field might contain
  164. shingles. By combining scores from all three fields we can match as many
  165. documents as possible with the main field, but use the second and third fields
  166. to push the most similar results to the top of the list.
  167. This query:
  168. [source,console]
  169. --------------------------------------------------
  170. GET /_search
  171. {
  172. "query": {
  173. "multi_match" : {
  174. "query": "quick brown fox",
  175. "type": "most_fields",
  176. "fields": [ "title", "title.original", "title.shingles" ]
  177. }
  178. }
  179. }
  180. --------------------------------------------------
  181. would be executed as:
  182. [source,console]
  183. --------------------------------------------------
  184. GET /_search
  185. {
  186. "query": {
  187. "bool": {
  188. "should": [
  189. { "match": { "title": "quick brown fox" }},
  190. { "match": { "title.original": "quick brown fox" }},
  191. { "match": { "title.shingles": "quick brown fox" }}
  192. ]
  193. }
  194. }
  195. }
  196. --------------------------------------------------
  197. The score from each `match` clause is added together, then divided by the
  198. number of `match` clauses.
  199. Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
  200. `fuzziness`, `lenient`, `prefix_length`, `max_expansions`, `rewrite`, and `zero_terms_query`.
  201. [[type-phrase]]
  202. ==== `phrase` and `phrase_prefix`
  203. The `phrase` and `phrase_prefix` types behave just like <<type-best-fields>>,
  204. but they use a `match_phrase` or `match_phrase_prefix` query instead of a
  205. `match` query.
  206. This query:
  207. [source,console]
  208. --------------------------------------------------
  209. GET /_search
  210. {
  211. "query": {
  212. "multi_match" : {
  213. "query": "quick brown f",
  214. "type": "phrase_prefix",
  215. "fields": [ "subject", "message" ]
  216. }
  217. }
  218. }
  219. --------------------------------------------------
  220. would be executed as:
  221. [source,console]
  222. --------------------------------------------------
  223. GET /_search
  224. {
  225. "query": {
  226. "dis_max": {
  227. "queries": [
  228. { "match_phrase_prefix": { "subject": "quick brown f" }},
  229. { "match_phrase_prefix": { "message": "quick brown f" }}
  230. ]
  231. }
  232. }
  233. }
  234. --------------------------------------------------
  235. Also, accepts `analyzer`, `boost`, `lenient` and `zero_terms_query` as explained
  236. in <<query-dsl-match-query>>, as well as `slop` which is explained in <<query-dsl-match-query-phrase>>.
  237. Type `phrase_prefix` additionally accepts `max_expansions`.
  238. [IMPORTANT]
  239. [[phrase-fuzziness]]
  240. .`phrase`, `phrase_prefix` and `fuzziness`
  241. ===================================================
  242. The `fuzziness` parameter cannot be used with the `phrase` or `phrase_prefix` type.
  243. ===================================================
  244. [[type-cross-fields]]
  245. ==== `cross_fields`
  246. The `cross_fields` type is particularly useful with structured documents where
  247. multiple fields *should* match. For instance, when querying the `first_name`
  248. and `last_name` fields for ``Will Smith'', the best match is likely to have
  249. ``Will'' in one field and ``Smith'' in the other.
  250. ****
  251. This sounds like a job for <<type-most-fields>> but there are two problems
  252. with that approach. The first problem is that `operator` and
  253. `minimum_should_match` are applied per-field, instead of per-term (see
  254. <<operator-min,explanation above>>).
  255. The second problem is to do with relevance: the different term frequencies in
  256. the `first_name` and `last_name` fields can produce unexpected results.
  257. For instance, imagine we have two people: ``Will Smith'' and ``Smith Jones''.
  258. ``Smith'' as a last name is very common (and so is of low importance) but
  259. ``Smith'' as a first name is very uncommon (and so is of great importance).
  260. If we do a search for ``Will Smith'', the ``Smith Jones'' document will
  261. probably appear above the better matching ``Will Smith'' because the score of
  262. `first_name:smith` has trumped the combined scores of `first_name:will` plus
  263. `last_name:smith`.
  264. ****
  265. One way of dealing with these types of queries is simply to index the
  266. `first_name` and `last_name` fields into a single `full_name` field. Of
  267. course, this can only be done at index time.
  268. The `cross_field` type tries to solve these problems at query time by taking a
  269. _term-centric_ approach. It first analyzes the query string into individual
  270. terms, then looks for each term in any of the fields, as though they were one
  271. big field.
  272. A query like:
  273. [source,console]
  274. --------------------------------------------------
  275. GET /_search
  276. {
  277. "query": {
  278. "multi_match" : {
  279. "query": "Will Smith",
  280. "type": "cross_fields",
  281. "fields": [ "first_name", "last_name" ],
  282. "operator": "and"
  283. }
  284. }
  285. }
  286. --------------------------------------------------
  287. is executed as:
  288. +(first_name:will last_name:will)
  289. +(first_name:smith last_name:smith)
  290. In other words, *all terms* must be present *in at least one field* for a
  291. document to match. (Compare this to
  292. <<operator-min,the logic used for `best_fields` and `most_fields`>>.)
  293. That solves one of the two problems. The problem of differing term frequencies
  294. is solved by _blending_ the term frequencies for all fields in order to even
  295. out the differences.
  296. In practice, `first_name:smith` will be treated as though it has the same
  297. frequencies as `last_name:smith`, plus one. This will make matches on
  298. `first_name` and `last_name` have comparable scores, with a tiny advantage
  299. for `last_name` since it is the most likely field that contains `smith`.
  300. Note that `cross_fields` is usually only useful on short string fields
  301. that all have a `boost` of `1`. Otherwise boosts, term freqs and length
  302. normalization contribute to the score in such a way that the blending of term
  303. statistics is not meaningful anymore.
  304. If you run the above query through the <<search-validate>>, it returns this
  305. explanation:
  306. +blended("will", fields: [first_name, last_name])
  307. +blended("smith", fields: [first_name, last_name])
  308. Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
  309. `lenient` and `zero_terms_query`.
  310. [[cross-field-analysis]]
  311. ===== `cross_field` and analysis
  312. The `cross_field` type can only work in term-centric mode on fields that have
  313. the same analyzer. Fields with the same analyzer are grouped together as in
  314. the example above. If there are multiple groups, they are combined with a
  315. `bool` query.
  316. For instance, if we have a `first` and `last` field which have
  317. the same analyzer, plus a `first.edge` and `last.edge` which
  318. both use an `edge_ngram` analyzer, this query:
  319. [source,console]
  320. --------------------------------------------------
  321. GET /_search
  322. {
  323. "query": {
  324. "multi_match" : {
  325. "query": "Jon",
  326. "type": "cross_fields",
  327. "fields": [
  328. "first", "first.edge",
  329. "last", "last.edge"
  330. ]
  331. }
  332. }
  333. }
  334. --------------------------------------------------
  335. would be executed as:
  336. blended("jon", fields: [first, last])
  337. | (
  338. blended("j", fields: [first.edge, last.edge])
  339. blended("jo", fields: [first.edge, last.edge])
  340. blended("jon", fields: [first.edge, last.edge])
  341. )
  342. In other words, `first` and `last` would be grouped together and
  343. treated as a single field, and `first.edge` and `last.edge` would be
  344. grouped together and treated as a single field.
  345. Having multiple groups is fine, but when combined with `operator` or
  346. `minimum_should_match`, it can suffer from the <<operator-min,same problem>>
  347. as `most_fields` or `best_fields`.
  348. You can easily rewrite this query yourself as two separate `cross_fields`
  349. queries combined with a `bool` query, and apply the `minimum_should_match`
  350. parameter to just one of them:
  351. [source,console]
  352. --------------------------------------------------
  353. GET /_search
  354. {
  355. "query": {
  356. "bool": {
  357. "should": [
  358. {
  359. "multi_match" : {
  360. "query": "Will Smith",
  361. "type": "cross_fields",
  362. "fields": [ "first", "last" ],
  363. "minimum_should_match": "50%" <1>
  364. }
  365. },
  366. {
  367. "multi_match" : {
  368. "query": "Will Smith",
  369. "type": "cross_fields",
  370. "fields": [ "*.edge" ]
  371. }
  372. }
  373. ]
  374. }
  375. }
  376. }
  377. --------------------------------------------------
  378. <1> Either `will` or `smith` must be present in either of the `first`
  379. or `last` fields
  380. You can force all fields into the same group by specifying the `analyzer`
  381. parameter in the query.
  382. [source,console]
  383. --------------------------------------------------
  384. GET /_search
  385. {
  386. "query": {
  387. "multi_match" : {
  388. "query": "Jon",
  389. "type": "cross_fields",
  390. "analyzer": "standard", <1>
  391. "fields": [ "first", "last", "*.edge" ]
  392. }
  393. }
  394. }
  395. --------------------------------------------------
  396. <1> Use the `standard` analyzer for all fields.
  397. which will be executed as:
  398. blended("will", fields: [first, first.edge, last.edge, last])
  399. blended("smith", fields: [first, first.edge, last.edge, last])
  400. [[tie-breaker]]
  401. ===== `tie_breaker`
  402. By default, each per-term `blended` query will use the best score returned by
  403. any field in a group, then these scores are added together to give the final
  404. score. The `tie_breaker` parameter can change the default behaviour of the
  405. per-term `blended` queries. It accepts:
  406. [horizontal]
  407. `0.0`:: Take the single best score out of (eg) `first_name:will`
  408. and `last_name:will` (*default*)
  409. `1.0`:: Add together the scores for (eg) `first_name:will` and
  410. `last_name:will`
  411. `0.0 < n < 1.0`:: Take the single best score plus +tie_breaker+ multiplied
  412. by each of the scores from other matching fields.
  413. [IMPORTANT]
  414. [[crossfields-fuzziness]]
  415. .`cross_fields` and `fuzziness`
  416. ===================================================
  417. The `fuzziness` parameter cannot be used with the `cross_fields` type.
  418. ===================================================
  419. [[type-bool-prefix]]
  420. ==== `bool_prefix`
  421. The `bool_prefix` type's scoring behaves like <<type-most-fields>>, but using a
  422. <<query-dsl-match-bool-prefix-query,`match_bool_prefix` query>> instead of a
  423. `match` query.
  424. [source,console]
  425. --------------------------------------------------
  426. GET /_search
  427. {
  428. "query": {
  429. "multi_match" : {
  430. "query": "quick brown f",
  431. "type": "bool_prefix",
  432. "fields": [ "subject", "message" ]
  433. }
  434. }
  435. }
  436. --------------------------------------------------
  437. The `analyzer`, `boost`, `operator`, `minimum_should_match`, `lenient`,
  438. `zero_terms_query`, and `auto_generate_synonyms_phrase_query` parameters as
  439. explained in <<query-dsl-match-query, match query>> are supported. The
  440. `fuzziness`, `prefix_length`, `max_expansions`, `rewrite`, and
  441. `fuzzy_transpositions` parameters are supported for the terms that are used to
  442. construct term queries, but do not have an effect on the prefix query
  443. constructed from the final term.
  444. The `slop` parameter is not supported by this query type.