stats-bucket-aggregation.asciidoc 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106
  1. [[search-aggregations-pipeline-stats-bucket-aggregation]]
  2. === Stats Bucket Aggregation
  3. experimental[]
  4. A sibling pipeline aggregation which calculates a variety of stats across all bucket of a specified metric in a sibling aggregation.
  5. The specified metric must be numeric and the sibling aggregation must be a multi-bucket aggregation.
  6. ==== Syntax
  7. A `stats_bucket` aggregation looks like this in isolation:
  8. [source,js]
  9. --------------------------------------------------
  10. {
  11. "stats_bucket": {
  12. "buckets_path": "the_sum"
  13. }
  14. }
  15. --------------------------------------------------
  16. .`stats_bucket` Parameters
  17. |===
  18. |Parameter Name |Description |Required |Default Value
  19. |`buckets_path` |The path to the buckets we wish to calculate stats for (see <<buckets-path-syntax>> for more
  20. details) |Required |
  21. |`gap_policy` |The policy to apply when gaps are found in the data (see <<gap-policy>> for more
  22. details)|Optional | `skip`
  23. |`format` |format to apply to the output value of this aggregation |Optional | `null`
  24. |===
  25. The following snippet calculates the sum of all the total monthly `sales` buckets:
  26. [source,js]
  27. --------------------------------------------------
  28. {
  29. "aggs" : {
  30. "sales_per_month" : {
  31. "date_histogram" : {
  32. "field" : "date",
  33. "interval" : "month"
  34. },
  35. "aggs": {
  36. "sales": {
  37. "sum": {
  38. "field": "price"
  39. }
  40. }
  41. }
  42. },
  43. "stats_monthly_sales": {
  44. "stats_bucket": {
  45. "buckets_paths": "sales_per_month>sales" <1>
  46. }
  47. }
  48. }
  49. }
  50. --------------------------------------------------
  51. <1> `bucket_paths` instructs this `stats_bucket` aggregation that we want the calculate stats for the `sales` aggregation in the
  52. `sales_per_month` date histogram.
  53. And the following may be the response:
  54. [source,js]
  55. --------------------------------------------------
  56. {
  57. "aggregations": {
  58. "sales_per_month": {
  59. "buckets": [
  60. {
  61. "key_as_string": "2015/01/01 00:00:00",
  62. "key": 1420070400000,
  63. "doc_count": 3,
  64. "sales": {
  65. "value": 550
  66. }
  67. },
  68. {
  69. "key_as_string": "2015/02/01 00:00:00",
  70. "key": 1422748800000,
  71. "doc_count": 2,
  72. "sales": {
  73. "value": 60
  74. }
  75. },
  76. {
  77. "key_as_string": "2015/03/01 00:00:00",
  78. "key": 1425168000000,
  79. "doc_count": 2,
  80. "sales": {
  81. "value": 375
  82. }
  83. }
  84. ]
  85. },
  86. "stats_monthly_sales": {
  87. "count": 3,
  88. "min": 60,
  89. "max": 550,
  90. "avg": 328.333333333,
  91. "sum": 985
  92. }
  93. }
  94. }
  95. --------------------------------------------------