multi-match-query.asciidoc 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494
  1. [[query-dsl-multi-match-query]]
  2. === Multi Match Query
  3. The `multi_match` query builds on the <<query-dsl-match-query,`match` query>>
  4. to allow multi-field queries:
  5. [source,js]
  6. --------------------------------------------------
  7. GET /_search
  8. {
  9. "query": {
  10. "multi_match" : {
  11. "query": "this is a test", <1>
  12. "fields": [ "subject", "message" ] <2>
  13. }
  14. }
  15. }
  16. --------------------------------------------------
  17. // AUTOSENSE
  18. <1> The query string.
  19. <2> The fields to be queried.
  20. [float]
  21. ==== `fields` and per-field boosting
  22. Fields can be specified with wildcards, eg:
  23. [source,js]
  24. --------------------------------------------------
  25. GET /_search
  26. {
  27. "query": {
  28. "multi_match" : {
  29. "query": "Will Smith",
  30. "fields": [ "title", "*_name" ] <1>
  31. }
  32. }
  33. }
  34. --------------------------------------------------
  35. // AUTOSENSE
  36. <1> Query the `title`, `first_name` and `last_name` fields.
  37. Individual fields can be boosted with the caret (`^`) notation:
  38. [source,js]
  39. --------------------------------------------------
  40. GET /_search
  41. {
  42. "query": {
  43. "multi_match" : {
  44. "query" : "this is a test",
  45. "fields" : [ "subject^3", "message" ] <1>
  46. }
  47. }
  48. }
  49. --------------------------------------------------
  50. // AUTOSENSE
  51. <1> The `subject` field is three times as important as the `message` field.
  52. [[multi-match-types]]
  53. [float]
  54. ==== Types of `multi_match` query:
  55. The way the `multi_match` query is executed internally depends on the `type`
  56. parameter, which can be set to:
  57. [horizontal]
  58. `best_fields`:: (*default*) Finds documents which match any field, but
  59. uses the `_score` from the best field. See <<type-best-fields>>.
  60. `most_fields`:: Finds documents which match any field and combines
  61. the `_score` from each field. See <<type-most-fields>>.
  62. `cross_fields`:: Treats fields with the same `analyzer` as though they
  63. were one big field. Looks for each word in *any*
  64. field. See <<type-cross-fields>>.
  65. `phrase`:: Runs a `match_phrase` query on each field and combines
  66. the `_score` from each field. See <<type-phrase>>.
  67. `phrase_prefix`:: Runs a `match_phrase_prefix` query on each field and
  68. combines the `_score` from each field. See <<type-phrase>>.
  69. [[type-best-fields]]
  70. ==== `best_fields`
  71. The `best_fields` type is most useful when you are searching for multiple
  72. words best found in the same field. For instance ``brown fox'' in a single
  73. field is more meaningful than ``brown'' in one field and ``fox'' in the other.
  74. The `best_fields` type generates a <<query-dsl-match-query,`match` query>> for
  75. each field and wraps them in a <<query-dsl-dis-max-query,`dis_max`>> query, to
  76. find the single best matching field. For instance, this query:
  77. [source,js]
  78. --------------------------------------------------
  79. GET /_search
  80. {
  81. "query": {
  82. "multi_match" : {
  83. "query": "brown fox",
  84. "type": "best_fields",
  85. "fields": [ "subject", "message" ],
  86. "tie_breaker": 0.3
  87. }
  88. }
  89. }
  90. --------------------------------------------------
  91. // AUTOSENSE
  92. would be executed as:
  93. [source,js]
  94. --------------------------------------------------
  95. GET /_search
  96. {
  97. "query": {
  98. "dis_max": {
  99. "queries": [
  100. { "match": { "subject": "brown fox" }},
  101. { "match": { "message": "brown fox" }}
  102. ],
  103. "tie_breaker": 0.3
  104. }
  105. }
  106. }
  107. --------------------------------------------------
  108. // AUTOSENSE
  109. Normally the `best_fields` type uses the score of the *single* best matching
  110. field, but if `tie_breaker` is specified, then it calculates the score as
  111. follows:
  112. * the score from the best matching field
  113. * plus `tie_breaker * _score` for all other matching fields
  114. Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
  115. `fuzziness`, `prefix_length`, `max_expansions`, `rewrite`, `zero_terms_query`
  116. and `cutoff_frequency`, as explained in <<query-dsl-match-query, match query>>.
  117. [IMPORTANT]
  118. [[operator-min]]
  119. .`operator` and `minimum_should_match`
  120. ===================================================
  121. The `best_fields` and `most_fields` types are _field-centric_ -- they generate
  122. a `match` query *per field*. This means that the `operator` and
  123. `minimum_should_match` parameters are applied to each field individually,
  124. which is probably not what you want.
  125. Take this query for example:
  126. [source,js]
  127. --------------------------------------------------
  128. GET /_search
  129. {
  130. "query": {
  131. "multi_match" : {
  132. "query": "Will Smith",
  133. "type": "best_fields",
  134. "fields": [ "first_name", "last_name" ],
  135. "operator": "and" <1>
  136. }
  137. }
  138. }
  139. --------------------------------------------------
  140. // AUTOSENSE
  141. <1> All terms must be present.
  142. This query is executed as:
  143. (+first_name:will +first_name:smith)
  144. | (+last_name:will +last_name:smith)
  145. In other words, *all terms* must be present *in a single field* for a document
  146. to match.
  147. See <<type-cross-fields>> for a better solution.
  148. ===================================================
  149. [[type-most-fields]]
  150. ==== `most_fields`
  151. The `most_fields` type is most useful when querying multiple fields that
  152. contain the same text analyzed in different ways. For instance, the main
  153. field may contain synonyms, stemming and terms without diacritics. A second
  154. field may contain the original terms, and a third field might contain
  155. shingles. By combining scores from all three fields we can match as many
  156. documents as possible with the main field, but use the second and third fields
  157. to push the most similar results to the top of the list.
  158. This query:
  159. [source,js]
  160. --------------------------------------------------
  161. GET /_search
  162. {
  163. "query": {
  164. "multi_match" : {
  165. "query": "quick brown fox",
  166. "type": "most_fields",
  167. "fields": [ "title", "title.original", "title.shingles" ]
  168. }
  169. }
  170. }
  171. --------------------------------------------------
  172. // AUTOSENSE
  173. would be executed as:
  174. [source,js]
  175. --------------------------------------------------
  176. GET /_search
  177. {
  178. "query": {
  179. "bool": {
  180. "should": [
  181. { "match": { "title": "quick brown fox" }},
  182. { "match": { "title.original": "quick brown fox" }},
  183. { "match": { "title.shingles": "quick brown fox" }}
  184. ]
  185. }
  186. }
  187. }
  188. --------------------------------------------------
  189. // AUTOSENSE
  190. The score from each `match` clause is added together, then divided by the
  191. number of `match` clauses.
  192. Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
  193. `fuzziness`, `prefix_length`, `max_expansions`, `rewrite`, `zero_terms_query`
  194. and `cutoff_frequency`, as explained in <<query-dsl-match-query,match query>>, but
  195. *see <<operator-min>>*.
  196. [[type-phrase]]
  197. ==== `phrase` and `phrase_prefix`
  198. The `phrase` and `phrase_prefix` types behave just like <<type-best-fields>>,
  199. but they use a `match_phrase` or `match_phrase_prefix` query instead of a
  200. `match` query.
  201. This query:
  202. [source,js]
  203. --------------------------------------------------
  204. GET /_search
  205. {
  206. "query": {
  207. "multi_match" : {
  208. "query": "quick brown f",
  209. "type": "phrase_prefix",
  210. "fields": [ "subject", "message" ]
  211. }
  212. }
  213. }
  214. --------------------------------------------------
  215. // AUTOSENSE
  216. would be executed as:
  217. [source,js]
  218. --------------------------------------------------
  219. GET /_search
  220. {
  221. "query": {
  222. "dis_max": {
  223. "queries": [
  224. { "match_phrase_prefix": { "subject": "quick brown f" }},
  225. { "match_phrase_prefix": { "message": "quick brown f" }}
  226. ]
  227. }
  228. }
  229. }
  230. --------------------------------------------------
  231. // AUTOSENSE
  232. Also, accepts `analyzer`, `boost`, `slop` and `zero_terms_query` as explained
  233. in <<query-dsl-match-query>>. Type `phrase_prefix` additionally accepts
  234. `max_expansions`.
  235. [[type-cross-fields]]
  236. ==== `cross_fields`
  237. The `cross_fields` type is particularly useful with structured documents where
  238. multiple fields *should* match. For instance, when querying the `first_name`
  239. and `last_name` fields for ``Will Smith'', the best match is likely to have
  240. ``Will'' in one field and ``Smith'' in the other.
  241. ****
  242. This sounds like a job for <<type-most-fields>> but there are two problems
  243. with that approach. The first problem is that `operator` and
  244. `minimum_should_match` are applied per-field, instead of per-term (see
  245. <<operator-min,explanation above>>).
  246. The second problem is to do with relevance: the different term frequencies in
  247. the `first_name` and `last_name` fields can produce unexpected results.
  248. For instance, imagine we have two people: ``Will Smith'' and ``Smith Jones''.
  249. ``Smith'' as a last name is very common (and so is of low importance) but
  250. ``Smith'' as a first name is very uncommon (and so is of great importance).
  251. If we do a search for ``Will Smith'', the ``Smith Jones'' document will
  252. probably appear above the better matching ``Will Smith'' because the score of
  253. `first_name:smith` has trumped the combined scores of `first_name:will` plus
  254. `last_name:smith`.
  255. ****
  256. One way of dealing with these types of queries is simply to index the
  257. `first_name` and `last_name` fields into a single `full_name` field. Of
  258. course, this can only be done at index time.
  259. The `cross_field` type tries to solve these problems at query time by taking a
  260. _term-centric_ approach. It first analyzes the query string into individual
  261. terms, then looks for each term in any of the fields, as though they were one
  262. big field.
  263. A query like:
  264. [source,js]
  265. --------------------------------------------------
  266. GET /_search
  267. {
  268. "query": {
  269. "multi_match" : {
  270. "query": "Will Smith",
  271. "type": "cross_fields",
  272. "fields": [ "first_name", "last_name" ],
  273. "operator": "and"
  274. }
  275. }
  276. }
  277. --------------------------------------------------
  278. // AUTOSENSE
  279. is executed as:
  280. +(first_name:will last_name:will)
  281. +(first_name:smith last_name:smith)
  282. In other words, *all terms* must be present *in at least one field* for a
  283. document to match. (Compare this to
  284. <<operator-min,the logic used for `best_fields` and `most_fields`>>.)
  285. That solves one of the two problems. The problem of differing term frequencies
  286. is solved by _blending_ the term frequencies for all fields in order to even
  287. out the differences.
  288. In practice, `first_name:smith` will be treated as though it has the same
  289. frequencies as `last_name:smith`, plus one. This will make matches on
  290. `first_name` and `last_name` have comparable scores, with a tiny advantage
  291. for `last_name` since it is the most likely field that contains `smith`.
  292. Note that `cross_fields` is usually only useful on short string fields
  293. that all have a `boost` of `1`. Otherwise boosts, term freqs and length
  294. normalization contribute to the score in such a way that the blending of term
  295. statistics is not meaningful anymore.
  296. If you run the above query through the <<search-validate>>, it returns this
  297. explanation:
  298. +blended("will", fields: [first_name, last_name])
  299. +blended("smith", fields: [first_name, last_name])
  300. Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
  301. `zero_terms_query` and `cutoff_frequency`, as explained in
  302. <<query-dsl-match-query, match query>>.
  303. ===== `cross_field` and analysis
  304. The `cross_field` type can only work in term-centric mode on fields that have
  305. the same analyzer. Fields with the same analyzer are grouped together as in
  306. the example above. If there are multiple groups, they are combined with a
  307. `bool` query.
  308. For instance, if we have a `first` and `last` field which have
  309. the same analyzer, plus a `first.edge` and `last.edge` which
  310. both use an `edge_ngram` analyzer, this query:
  311. [source,js]
  312. --------------------------------------------------
  313. GET /_search
  314. {
  315. "query": {
  316. "multi_match" : {
  317. "query": "Jon",
  318. "type": "cross_fields",
  319. "fields": [
  320. "first", "first.edge",
  321. "last", "last.edge"
  322. ]
  323. }
  324. }
  325. }
  326. --------------------------------------------------
  327. // AUTOSENSE
  328. would be executed as:
  329. blended("jon", fields: [first, last])
  330. | (
  331. blended("j", fields: [first.edge, last.edge])
  332. blended("jo", fields: [first.edge, last.edge])
  333. blended("jon", fields: [first.edge, last.edge])
  334. )
  335. In other words, `first` and `last` would be grouped together and
  336. treated as a single field, and `first.edge` and `last.edge` would be
  337. grouped together and treated as a single field.
  338. Having multiple groups is fine, but when combined with `operator` or
  339. `minimum_should_match`, it can suffer from the <<operator-min,same problem>>
  340. as `most_fields` or `best_fields`.
  341. You can easily rewrite this query yourself as two separate `cross_fields`
  342. queries combined with a `bool` query, and apply the `minimum_should_match`
  343. parameter to just one of them:
  344. [source,js]
  345. --------------------------------------------------
  346. GET /_search
  347. {
  348. "query": {
  349. "bool": {
  350. "should": [
  351. {
  352. "multi_match" : {
  353. "query": "Will Smith",
  354. "type": "cross_fields",
  355. "fields": [ "first", "last" ],
  356. "minimum_should_match": "50%" <1>
  357. }
  358. },
  359. {
  360. "multi_match" : {
  361. "query": "Will Smith",
  362. "type": "cross_fields",
  363. "fields": [ "*.edge" ]
  364. }
  365. }
  366. ]
  367. }
  368. }
  369. }
  370. --------------------------------------------------
  371. // AUTOSENSE
  372. <1> Either `will` or `smith` must be present in either of the `first`
  373. or `last` fields
  374. You can force all fields into the same group by specifying the `analyzer`
  375. parameter in the query.
  376. [source,js]
  377. --------------------------------------------------
  378. GET /_search
  379. {
  380. "query": {
  381. "multi_match" : {
  382. "query": "Jon",
  383. "type": "cross_fields",
  384. "analyzer": "standard", <1>
  385. "fields": [ "first", "last", "*.edge" ]
  386. }
  387. }
  388. }
  389. --------------------------------------------------
  390. // AUTOSENSE
  391. <1> Use the `standard` analyzer for all fields.
  392. which will be executed as:
  393. blended("will", fields: [first, first.edge, last.edge, last])
  394. blended("smith", fields: [first, first.edge, last.edge, last])
  395. ===== `tie_breaker`
  396. By default, each per-term `blended` query will use the best score returned by
  397. any field in a group, then these scores are added together to give the final
  398. score. The `tie_breaker` parameter can change the default behaviour of the
  399. per-term `blended` queries. It accepts:
  400. [horizontal]
  401. `0.0`:: Take the single best score out of (eg) `first_name:will`
  402. and `last_name:will` (*default*)
  403. `1.0`:: Add together the scores for (eg) `first_name:will` and
  404. `last_name:will`
  405. `0.0 < n < 1.0`:: Take the single best score plus +tie_breaker+ multiplied
  406. by each of the scores from other matching fields.