12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- [role="xpack"]
- [[autoscaling-machine-learning-decider]]
- === Machine learning decider
- The {cloud}/ec-autoscaling.html[autoscaling] {ml} decider (`ml`) calculates the memory and CPU requirements to run {ml}
- jobs and trained models.
- The {ml} decider is enabled for policies governing `ml` nodes.
- NOTE: For {ml} jobs to open when the cluster is not appropriately scaled, set
- `xpack.ml.max_lazy_ml_nodes` to the largest number of possible {ml} nodes (refer
- to <<advanced-ml-settings>> for more information). In {ess}, this is
- automatically set.
- [[autoscaling-machine-learning-decider-settings]]
- ==== Configuration settings
- Both `num_anomaly_jobs_in_queue` and `num_analytics_jobs_in_queue` are designed
- to delay a scale-up event. If the cluster is too small, these settings indicate
- how many jobs of each type can be unassigned from a node. Both settings are only
- considered for jobs that can be opened given the current scale. If a job is too
- large for any node size or if a job can't be assigned without user intervention
- (for example, a user calling `_stop` against a real-time {anomaly-job}), the
- numbers are ignored for that particular job.
- `num_anomaly_jobs_in_queue`::
- (Optional, integer)
- Specifies the number of queued {anomaly-jobs} to allow. Defaults to `0`.
- `num_analytics_jobs_in_queue`::
- (Optional, integer)
- Specifies the number of queued {dfanalytics-jobs} to allow. Defaults to `0`.
- `down_scale_delay`::
- (Optional, <<time-units,time value>>)
- Specifies the time to delay before scaling down. Defaults to 1 hour. If a scale
- down is possible for the entire time window, then a scale down is requested. If
- the cluster requires a scale up during the window, the window is reset.
- [[autoscaling-machine-learning-decider-examples]]
- ==== {api-examples-title}
- This example creates an autoscaling policy named `my_autoscaling_policy` that
- overrides the default configuration of the {ml} decider.
- [source,console]
- --------------------------------------------------
- PUT /_autoscaling/policy/my_autoscaling_policy
- {
- "roles" : [ "ml" ],
- "deciders": {
- "ml": {
- "num_anomaly_jobs_in_queue": 5,
- "num_analytics_jobs_in_queue": 3,
- "down_scale_delay": "30m"
- }
- }
- }
- --------------------------------------------------
- // TEST
- The API returns the following result:
- [source,console-result]
- --------------------------------------------------
- {
- "acknowledged": true
- }
- --------------------------------------------------
- //////////////////////////
- [source,console]
- --------------------------------------------------
- DELETE /_autoscaling/policy/my_autoscaling_policy
- --------------------------------------------------
- // TEST[continued]
- //////////////////////////
|