123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- [[search-aggregations-metrics-avg-aggregation]]
- === Avg aggregation
- ++++
- <titleabbrev>Avg</titleabbrev>
- ++++
- A `single-value` metrics aggregation that computes the average of numeric values that are extracted from the aggregated documents. These values can be extracted either from specific numeric fields in the documents.
- Assuming the data consists of documents representing exams grades (between 0
- and 100) of students we can average their scores with:
- [source,console]
- --------------------------------------------------
- POST /exams/_search?size=0
- {
- "aggs": {
- "avg_grade": { "avg": { "field": "grade" } }
- }
- }
- --------------------------------------------------
- // TEST[setup:exams]
- The above aggregation computes the average grade over all documents. The aggregation type is `avg` and the `field` setting defines the numeric field of the documents the average will be computed on. The above will return the following:
- [source,console-result]
- --------------------------------------------------
- {
- ...
- "aggregations": {
- "avg_grade": {
- "value": 75.0
- }
- }
- }
- --------------------------------------------------
- // TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
- The name of the aggregation (`avg_grade` above) also serves as the key by which the aggregation result can be retrieved from the returned response.
- ==== Script
- Let's say the exam was exceedingly difficult, and you need to apply a grade correction. Average a <<runtime,runtime field>> to get a corrected average:
- [source,console]
- ----
- POST /exams/_search?size=0
- {
- "runtime_mappings": {
- "grade.corrected": {
- "type": "double",
- "script": {
- "source": "emit(Math.min(100, doc['grade'].value * params.correction))",
- "params": {
- "correction": 1.2
- }
- }
- }
- },
- "aggs": {
- "avg_corrected_grade": {
- "avg": {
- "field": "grade.corrected"
- }
- }
- }
- }
- ----
- // TEST[setup:exams]
- // TEST[s/size=0/size=0&filter_path=aggregations/]
- ////
- [source,console-result]
- ----
- {
- "aggregations": {
- "avg_corrected_grade": {
- "value": 80.0
- }
- }
- }
- ----
- ////
- ==== Missing value
- The `missing` parameter defines how documents that are missing a value should be treated.
- By default they will be ignored but it is also possible to treat them as if they
- had a value.
- [source,console]
- --------------------------------------------------
- POST /exams/_search?size=0
- {
- "aggs": {
- "grade_avg": {
- "avg": {
- "field": "grade",
- "missing": 10 <1>
- }
- }
- }
- }
- --------------------------------------------------
- // TEST[setup:exams]
- <1> Documents without a value in the `grade` field will fall into the same bucket as documents that have the value `10`.
- [[search-aggregations-metrics-avg-aggregation-histogram-fields]]
- ==== Histogram fields
- When average is computed on <<histogram,histogram fields>>, the result of the aggregation is the weighted average
- of all elements in the `values` array taking into consideration the number in the same position in the `counts` array.
- For example, for the following index that stores pre-aggregated histograms with latency metrics for different networks:
- [source,console]
- --------------------------------------------------
- PUT metrics_index/_doc/1
- {
- "network.name" : "net-1",
- "latency_histo" : {
- "values" : [0.1, 0.2, 0.3, 0.4, 0.5], <1>
- "counts" : [3, 7, 23, 12, 6] <2>
- }
- }
- PUT metrics_index/_doc/2
- {
- "network.name" : "net-2",
- "latency_histo" : {
- "values" : [0.1, 0.2, 0.3, 0.4, 0.5], <1>
- "counts" : [8, 17, 8, 7, 6] <2>
- }
- }
- POST /metrics_index/_search?size=0
- {
- "aggs": {
- "avg_latency":
- { "avg": { "field": "latency_histo" }
- }
- }
- }
- --------------------------------------------------
- For each histogram field the `avg` aggregation adds each number in the `values` array <1> multiplied by its associated count
- in the `counts` array <2>. Eventually, it will compute the average over those values for all histograms and return the following result:
- [source,console-result]
- --------------------------------------------------
- {
- ...
- "aggregations": {
- "avg_latency": {
- "value": 0.29690721649
- }
- }
- }
- --------------------------------------------------
- // TESTRESPONSE[skip:test not setup]
|