123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- [[search-aggregations-metrics-stats-aggregation]]
- === Stats Aggregation
- A `multi-value` metrics aggregation that computes stats over numeric values extracted from the aggregated documents. These values can be extracted either from specific numeric fields in the documents, or be generated by a provided script.
- The stats that are returned consist of: `min`, `max`, `sum`, `count` and `avg`.
- Assuming the data consists of documents representing exams grades (between 0 and 100) of students
- [source,console]
- --------------------------------------------------
- POST /exams/_search?size=0
- {
- "aggs" : {
- "grades_stats" : { "stats" : { "field" : "grade" } }
- }
- }
- --------------------------------------------------
- // TEST[setup:exams]
- The above aggregation computes the grades statistics over all documents. The aggregation type is `stats` and the `field` setting defines the numeric field of the documents the stats will be computed on. The above will return the following:
- [source,js]
- --------------------------------------------------
- {
- ...
- "aggregations": {
- "grades_stats": {
- "count": 2,
- "min": 50.0,
- "max": 100.0,
- "avg": 75.0,
- "sum": 150.0
- }
- }
- }
- --------------------------------------------------
- // TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
- The name of the aggregation (`grades_stats` above) also serves as the key by which the aggregation result can be retrieved from the returned response.
- ==== Script
- Computing the grades stats based on a script:
- [source,console]
- --------------------------------------------------
- POST /exams/_search?size=0
- {
- "aggs" : {
- "grades_stats" : {
- "stats" : {
- "script" : {
- "lang": "painless",
- "source": "doc['grade'].value"
- }
- }
- }
- }
- }
- --------------------------------------------------
- // TEST[setup:exams]
- This will interpret the `script` parameter as an `inline` script with the `painless` script language and no script parameters. To use a stored script use the following syntax:
- [source,console]
- --------------------------------------------------
- POST /exams/_search?size=0
- {
- "aggs" : {
- "grades_stats" : {
- "stats" : {
- "script" : {
- "id": "my_script",
- "params" : {
- "field" : "grade"
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // TEST[setup:exams,stored_example_script]
- ===== Value Script
- It turned out that the exam was way above the level of the students and a grade correction needs to be applied. We can use a value script to get the new stats:
- [source,console]
- --------------------------------------------------
- POST /exams/_search?size=0
- {
- "aggs" : {
- "grades_stats" : {
- "stats" : {
- "field" : "grade",
- "script" : {
- "lang": "painless",
- "source": "_value * params.correction",
- "params" : {
- "correction" : 1.2
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // TEST[setup:exams]
- ==== Missing value
- The `missing` parameter defines how documents that are missing a value should be treated.
- By default they will be ignored but it is also possible to treat them as if they
- had a value.
- [source,console]
- --------------------------------------------------
- POST /exams/_search?size=0
- {
- "aggs" : {
- "grades_stats" : {
- "stats" : {
- "field" : "grade",
- "missing": 0 <1>
- }
- }
- }
- }
- --------------------------------------------------
- // TEST[setup:exams]
- <1> Documents without a value in the `grade` field will fall into the same bucket as documents that have the value `0`.
|