| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301 | [[query-dsl-common-terms-query]]=== Common Terms QueryThe `common` terms query is a modern alternative to stopwords whichimproves the precision and recall of search results (by taking stopwordsinto account), without sacrificing performance.[float]==== The problemEvery term in a query has a cost. A search for `"The brown fox"`requires three term queries, one for each of `"the"`, `"brown"` and`"fox"`, all of which are executed against all documents in the index.The query for `"the"` is likely to match many documents and thus has amuch smaller impact on relevance than the other two terms.Previously, the solution to this problem was to ignore terms with highfrequency. By treating `"the"` as a _stopword_, we reduce the index sizeand reduce the number of term queries that need to be executed.The problem with this approach is that, while stopwords have a smallimpact on relevance, they are still important. If we remove stopwords,we lose precision, (eg we are unable to distinguish between `"happy"`and `"not happy"`) and we lose recall (eg text like `"The The"` or`"To be or not to be"` would simply not exist in the index).[float]==== The solutionThe `common` terms query divides the query terms into two groups: moreimportant (ie _low frequency_ terms) and less important (ie _highfrequency_ terms which would previously have been stopwords).First it searches for documents which match the more important terms.These are the terms which appear in fewer documents and have a greaterimpact on relevance.Then, it executes a second query for the less important terms -- termswhich appear frequently and have a low impact on relevance. But insteadof calculating the relevance score for *all* matching documents, it onlycalculates the `_score` for documents already matched by the firstquery. In this way the high frequency terms can improve the relevancecalculation without paying the cost of poor performance.If a query consists only of high frequency terms, then a single query isexecuted as an `AND` (conjunction) query, in other words all terms arerequired. Even though each individual term will match many documents,the combination of terms narrows down the resultset to only the mostrelevant. The single query can also be executed as an `OR` with aspecific<<query-dsl-minimum-should-match,`minimum_should_match`>>,in this case a high enough value should probably be used.Terms are allocated to the high or low frequency groups based on the`cutoff_frequency`, which can be specified as an absolute frequency(`>=1`) or as a relative frequency (`0.0 .. 1.0`). (Remember that documentfrequencies are computed on a per shard level as explained in the blog post{defguide}/relevance-is-broken.html[Relevance is broken].)Perhaps the most interesting property of this query is that it adapts todomain specific stopwords automatically. For example, on a video hostingsite, common terms like `"clip"` or `"video"` will automatically behaveas stopwords without the need to maintain a manual list.[float]==== ExamplesIn this example, words that have a document frequency greater than 0.1%(eg `"this"` and `"is"`) will be treated as _common terms_.[source,js]--------------------------------------------------GET /_search{    "query": {        "common": {            "body": {                "query": "this is bonsai cool",                    "cutoff_frequency": 0.001            }        }    }}--------------------------------------------------// CONSOLEThe number of terms which should match can be controlled with the<<query-dsl-minimum-should-match,`minimum_should_match`>>(`high_freq`, `low_freq`), `low_freq_operator` (default `"or"`) and`high_freq_operator` (default `"or"`) parameters.For low frequency terms, set the `low_freq_operator` to `"and"` to makeall terms required:[source,js]--------------------------------------------------GET /_search{    "query": {        "common": {            "body": {                "query": "nelly the elephant as a cartoon",                    "cutoff_frequency": 0.001,                    "low_freq_operator": "and"            }        }    }}--------------------------------------------------// CONSOLEwhich is roughly equivalent to:[source,js]--------------------------------------------------GET /_search{    "query": {        "bool": {            "must": [            { "term": { "body": "nelly"}},            { "term": { "body": "elephant"}},            { "term": { "body": "cartoon"}}            ],            "should": [            { "term": { "body": "the"}},            { "term": { "body": "as"}},            { "term": { "body": "a"}}            ]        }    }}--------------------------------------------------// CONSOLEAlternatively use<<query-dsl-minimum-should-match,`minimum_should_match`>>to specify a minimum number or percentage of low frequency terms whichmust be present, for instance:[source,js]--------------------------------------------------GET /_search{    "query": {        "common": {            "body": {                "query": "nelly the elephant as a cartoon",                "cutoff_frequency": 0.001,                "minimum_should_match": 2            }        }    }}--------------------------------------------------// CONSOLEwhich is roughly equivalent to:[source,js]--------------------------------------------------GET /_search{    "query": {        "bool": {            "must": {                "bool": {                    "should": [                    { "term": { "body": "nelly"}},                    { "term": { "body": "elephant"}},                    { "term": { "body": "cartoon"}}                    ],                    "minimum_should_match": 2                }            },            "should": [                { "term": { "body": "the"}},                { "term": { "body": "as"}},                { "term": { "body": "a"}}                ]        }    }}--------------------------------------------------// CONSOLEminimum_should_matchA different<<query-dsl-minimum-should-match,`minimum_should_match`>>can be applied for low and high frequency terms with the additional`low_freq` and `high_freq` parameters. Here is an example when providingadditional parameters (note the change in structure):[source,js]--------------------------------------------------GET /_search{    "query": {        "common": {            "body": {                "query": "nelly the elephant not as a cartoon",                    "cutoff_frequency": 0.001,                    "minimum_should_match": {                        "low_freq" : 2,                        "high_freq" : 3                    }            }        }    }}--------------------------------------------------// CONSOLEwhich is roughly equivalent to:[source,js]--------------------------------------------------GET /_search{    "query": {        "bool": {            "must": {                "bool": {                    "should": [                    { "term": { "body": "nelly"}},                    { "term": { "body": "elephant"}},                    { "term": { "body": "cartoon"}}                    ],                    "minimum_should_match": 2                }            },            "should": {                "bool": {                    "should": [                    { "term": { "body": "the"}},                    { "term": { "body": "not"}},                    { "term": { "body": "as"}},                    { "term": { "body": "a"}}                    ],                    "minimum_should_match": 3                }            }        }    }}--------------------------------------------------// CONSOLEIn this case it means the high frequency terms have only an impact onrelevance when there are at least three of them. But the mostinteresting use of the<<query-dsl-minimum-should-match,`minimum_should_match`>>for high frequency terms is when there are only high frequency terms:[source,js]--------------------------------------------------GET /_search{    "query": {        "common": {            "body": {                "query": "how not to be",                    "cutoff_frequency": 0.001,                    "minimum_should_match": {                        "low_freq" : 2,                        "high_freq" : 3                    }            }        }    }}--------------------------------------------------// CONSOLEwhich is roughly equivalent to:[source,js]--------------------------------------------------GET /_search{    "query": {        "bool": {            "should": [            { "term": { "body": "how"}},            { "term": { "body": "not"}},            { "term": { "body": "to"}},            { "term": { "body": "be"}}            ],            "minimum_should_match": "3<50%"        }    }}--------------------------------------------------// CONSOLEThe high frequency generated query is then slightly less restrictivethan with an `AND`.The `common` terms query also supports `boost`, `analyzer` and`disable_coord` as parameters.
 |