multi-match-query.asciidoc 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518
  1. [[query-dsl-multi-match-query]]
  2. === Multi Match Query
  3. The `multi_match` query builds on the <<query-dsl-match-query,`match` query>>
  4. to allow multi-field queries:
  5. [source,js]
  6. --------------------------------------------------
  7. GET /_search
  8. {
  9. "query": {
  10. "multi_match" : {
  11. "query": "this is a test", <1>
  12. "fields": [ "subject", "message" ] <2>
  13. }
  14. }
  15. }
  16. --------------------------------------------------
  17. // CONSOLE
  18. <1> The query string.
  19. <2> The fields to be queried.
  20. [float]
  21. ==== `fields` and per-field boosting
  22. Fields can be specified with wildcards, eg:
  23. [source,js]
  24. --------------------------------------------------
  25. GET /_search
  26. {
  27. "query": {
  28. "multi_match" : {
  29. "query": "Will Smith",
  30. "fields": [ "title", "*_name" ] <1>
  31. }
  32. }
  33. }
  34. --------------------------------------------------
  35. // CONSOLE
  36. <1> Query the `title`, `first_name` and `last_name` fields.
  37. Individual fields can be boosted with the caret (`^`) notation:
  38. [source,js]
  39. --------------------------------------------------
  40. GET /_search
  41. {
  42. "query": {
  43. "multi_match" : {
  44. "query" : "this is a test",
  45. "fields" : [ "subject^3", "message" ] <1>
  46. }
  47. }
  48. }
  49. --------------------------------------------------
  50. // CONSOLE
  51. <1> The `subject` field is three times as important as the `message` field.
  52. If no `fields` are provided, the `multi_match` query defaults to the `index.query.default_field`
  53. index settings, which in turn defaults to `*`. `*` extracts all fields in the mapping that
  54. are eligible to term queries and filters the metadata fields. All extracted fields are then
  55. combined to build a query.
  56. WARNING: There is a limit on the number of fields that can be queried
  57. at once. It is defined by the `indices.query.bool.max_clause_count` <<search-settings>>
  58. which defaults to 1024.
  59. [[multi-match-types]]
  60. [float]
  61. ==== Types of `multi_match` query:
  62. The way the `multi_match` query is executed internally depends on the `type`
  63. parameter, which can be set to:
  64. [horizontal]
  65. `best_fields`:: (*default*) Finds documents which match any field, but
  66. uses the `_score` from the best field. See <<type-best-fields>>.
  67. `most_fields`:: Finds documents which match any field and combines
  68. the `_score` from each field. See <<type-most-fields>>.
  69. `cross_fields`:: Treats fields with the same `analyzer` as though they
  70. were one big field. Looks for each word in *any*
  71. field. See <<type-cross-fields>>.
  72. `phrase`:: Runs a `match_phrase` query on each field and uses the `_score`
  73. from the best field. See <<type-phrase>>.
  74. `phrase_prefix`:: Runs a `match_phrase_prefix` query on each field and
  75. combines the `_score` from each field. See <<type-phrase>>.
  76. [[type-best-fields]]
  77. ==== `best_fields`
  78. The `best_fields` type is most useful when you are searching for multiple
  79. words best found in the same field. For instance ``brown fox'' in a single
  80. field is more meaningful than ``brown'' in one field and ``fox'' in the other.
  81. The `best_fields` type generates a <<query-dsl-match-query,`match` query>> for
  82. each field and wraps them in a <<query-dsl-dis-max-query,`dis_max`>> query, to
  83. find the single best matching field. For instance, this query:
  84. [source,js]
  85. --------------------------------------------------
  86. GET /_search
  87. {
  88. "query": {
  89. "multi_match" : {
  90. "query": "brown fox",
  91. "type": "best_fields",
  92. "fields": [ "subject", "message" ],
  93. "tie_breaker": 0.3
  94. }
  95. }
  96. }
  97. --------------------------------------------------
  98. // CONSOLE
  99. would be executed as:
  100. [source,js]
  101. --------------------------------------------------
  102. GET /_search
  103. {
  104. "query": {
  105. "dis_max": {
  106. "queries": [
  107. { "match": { "subject": "brown fox" }},
  108. { "match": { "message": "brown fox" }}
  109. ],
  110. "tie_breaker": 0.3
  111. }
  112. }
  113. }
  114. --------------------------------------------------
  115. // CONSOLE
  116. Normally the `best_fields` type uses the score of the *single* best matching
  117. field, but if `tie_breaker` is specified, then it calculates the score as
  118. follows:
  119. * the score from the best matching field
  120. * plus `tie_breaker * _score` for all other matching fields
  121. Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
  122. `fuzziness`, `lenient`, `prefix_length`, `max_expansions`, `rewrite`, `zero_terms_query`,
  123. `cutoff_frequency`, `auto_generate_synonyms_phrase_query` and `fuzzy_transpositions`,
  124. as explained in <<query-dsl-match-query, match query>>.
  125. [IMPORTANT]
  126. [[operator-min]]
  127. .`operator` and `minimum_should_match`
  128. ===================================================
  129. The `best_fields` and `most_fields` types are _field-centric_ -- they generate
  130. a `match` query *per field*. This means that the `operator` and
  131. `minimum_should_match` parameters are applied to each field individually,
  132. which is probably not what you want.
  133. Take this query for example:
  134. [source,js]
  135. --------------------------------------------------
  136. GET /_search
  137. {
  138. "query": {
  139. "multi_match" : {
  140. "query": "Will Smith",
  141. "type": "best_fields",
  142. "fields": [ "first_name", "last_name" ],
  143. "operator": "and" <1>
  144. }
  145. }
  146. }
  147. --------------------------------------------------
  148. // CONSOLE
  149. <1> All terms must be present.
  150. This query is executed as:
  151. (+first_name:will +first_name:smith)
  152. | (+last_name:will +last_name:smith)
  153. In other words, *all terms* must be present *in a single field* for a document
  154. to match.
  155. See <<type-cross-fields>> for a better solution.
  156. ===================================================
  157. [[type-most-fields]]
  158. ==== `most_fields`
  159. The `most_fields` type is most useful when querying multiple fields that
  160. contain the same text analyzed in different ways. For instance, the main
  161. field may contain synonyms, stemming and terms without diacritics. A second
  162. field may contain the original terms, and a third field might contain
  163. shingles. By combining scores from all three fields we can match as many
  164. documents as possible with the main field, but use the second and third fields
  165. to push the most similar results to the top of the list.
  166. This query:
  167. [source,js]
  168. --------------------------------------------------
  169. GET /_search
  170. {
  171. "query": {
  172. "multi_match" : {
  173. "query": "quick brown fox",
  174. "type": "most_fields",
  175. "fields": [ "title", "title.original", "title.shingles" ]
  176. }
  177. }
  178. }
  179. --------------------------------------------------
  180. // CONSOLE
  181. would be executed as:
  182. [source,js]
  183. --------------------------------------------------
  184. GET /_search
  185. {
  186. "query": {
  187. "bool": {
  188. "should": [
  189. { "match": { "title": "quick brown fox" }},
  190. { "match": { "title.original": "quick brown fox" }},
  191. { "match": { "title.shingles": "quick brown fox" }}
  192. ]
  193. }
  194. }
  195. }
  196. --------------------------------------------------
  197. // CONSOLE
  198. The score from each `match` clause is added together, then divided by the
  199. number of `match` clauses.
  200. Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
  201. `fuzziness`, `lenient`, `prefix_length`, `max_expansions`, `rewrite`, `zero_terms_query`
  202. and `cutoff_frequency`, as explained in <<query-dsl-match-query,match query>>, but
  203. *see <<operator-min>>*.
  204. [[type-phrase]]
  205. ==== `phrase` and `phrase_prefix`
  206. The `phrase` and `phrase_prefix` types behave just like <<type-best-fields>>,
  207. but they use a `match_phrase` or `match_phrase_prefix` query instead of a
  208. `match` query.
  209. This query:
  210. [source,js]
  211. --------------------------------------------------
  212. GET /_search
  213. {
  214. "query": {
  215. "multi_match" : {
  216. "query": "quick brown f",
  217. "type": "phrase_prefix",
  218. "fields": [ "subject", "message" ]
  219. }
  220. }
  221. }
  222. --------------------------------------------------
  223. // CONSOLE
  224. would be executed as:
  225. [source,js]
  226. --------------------------------------------------
  227. GET /_search
  228. {
  229. "query": {
  230. "dis_max": {
  231. "queries": [
  232. { "match_phrase_prefix": { "subject": "quick brown f" }},
  233. { "match_phrase_prefix": { "message": "quick brown f" }}
  234. ]
  235. }
  236. }
  237. }
  238. --------------------------------------------------
  239. // CONSOLE
  240. Also, accepts `analyzer`, `boost`, `lenient`, `slop` and `zero_terms_query` as explained
  241. in <<query-dsl-match-query>>. Type `phrase_prefix` additionally accepts
  242. `max_expansions`.
  243. [IMPORTANT]
  244. [[phrase-fuzziness]]
  245. .`phrase`, `phrase_prefix` and `fuzziness`
  246. ===================================================
  247. The `fuzziness` parameter cannot be used with the `phrase` or `phrase_prefix` type.
  248. ===================================================
  249. [[type-cross-fields]]
  250. ==== `cross_fields`
  251. The `cross_fields` type is particularly useful with structured documents where
  252. multiple fields *should* match. For instance, when querying the `first_name`
  253. and `last_name` fields for ``Will Smith'', the best match is likely to have
  254. ``Will'' in one field and ``Smith'' in the other.
  255. ****
  256. This sounds like a job for <<type-most-fields>> but there are two problems
  257. with that approach. The first problem is that `operator` and
  258. `minimum_should_match` are applied per-field, instead of per-term (see
  259. <<operator-min,explanation above>>).
  260. The second problem is to do with relevance: the different term frequencies in
  261. the `first_name` and `last_name` fields can produce unexpected results.
  262. For instance, imagine we have two people: ``Will Smith'' and ``Smith Jones''.
  263. ``Smith'' as a last name is very common (and so is of low importance) but
  264. ``Smith'' as a first name is very uncommon (and so is of great importance).
  265. If we do a search for ``Will Smith'', the ``Smith Jones'' document will
  266. probably appear above the better matching ``Will Smith'' because the score of
  267. `first_name:smith` has trumped the combined scores of `first_name:will` plus
  268. `last_name:smith`.
  269. ****
  270. One way of dealing with these types of queries is simply to index the
  271. `first_name` and `last_name` fields into a single `full_name` field. Of
  272. course, this can only be done at index time.
  273. The `cross_field` type tries to solve these problems at query time by taking a
  274. _term-centric_ approach. It first analyzes the query string into individual
  275. terms, then looks for each term in any of the fields, as though they were one
  276. big field.
  277. A query like:
  278. [source,js]
  279. --------------------------------------------------
  280. GET /_search
  281. {
  282. "query": {
  283. "multi_match" : {
  284. "query": "Will Smith",
  285. "type": "cross_fields",
  286. "fields": [ "first_name", "last_name" ],
  287. "operator": "and"
  288. }
  289. }
  290. }
  291. --------------------------------------------------
  292. // CONSOLE
  293. is executed as:
  294. +(first_name:will last_name:will)
  295. +(first_name:smith last_name:smith)
  296. In other words, *all terms* must be present *in at least one field* for a
  297. document to match. (Compare this to
  298. <<operator-min,the logic used for `best_fields` and `most_fields`>>.)
  299. That solves one of the two problems. The problem of differing term frequencies
  300. is solved by _blending_ the term frequencies for all fields in order to even
  301. out the differences.
  302. In practice, `first_name:smith` will be treated as though it has the same
  303. frequencies as `last_name:smith`, plus one. This will make matches on
  304. `first_name` and `last_name` have comparable scores, with a tiny advantage
  305. for `last_name` since it is the most likely field that contains `smith`.
  306. Note that `cross_fields` is usually only useful on short string fields
  307. that all have a `boost` of `1`. Otherwise boosts, term freqs and length
  308. normalization contribute to the score in such a way that the blending of term
  309. statistics is not meaningful anymore.
  310. If you run the above query through the <<search-validate>>, it returns this
  311. explanation:
  312. +blended("will", fields: [first_name, last_name])
  313. +blended("smith", fields: [first_name, last_name])
  314. Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
  315. `lenient`, `zero_terms_query` and `cutoff_frequency`, as explained in
  316. <<query-dsl-match-query, match query>>.
  317. ===== `cross_field` and analysis
  318. The `cross_field` type can only work in term-centric mode on fields that have
  319. the same analyzer. Fields with the same analyzer are grouped together as in
  320. the example above. If there are multiple groups, they are combined with a
  321. `bool` query.
  322. For instance, if we have a `first` and `last` field which have
  323. the same analyzer, plus a `first.edge` and `last.edge` which
  324. both use an `edge_ngram` analyzer, this query:
  325. [source,js]
  326. --------------------------------------------------
  327. GET /_search
  328. {
  329. "query": {
  330. "multi_match" : {
  331. "query": "Jon",
  332. "type": "cross_fields",
  333. "fields": [
  334. "first", "first.edge",
  335. "last", "last.edge"
  336. ]
  337. }
  338. }
  339. }
  340. --------------------------------------------------
  341. // CONSOLE
  342. would be executed as:
  343. blended("jon", fields: [first, last])
  344. | (
  345. blended("j", fields: [first.edge, last.edge])
  346. blended("jo", fields: [first.edge, last.edge])
  347. blended("jon", fields: [first.edge, last.edge])
  348. )
  349. In other words, `first` and `last` would be grouped together and
  350. treated as a single field, and `first.edge` and `last.edge` would be
  351. grouped together and treated as a single field.
  352. Having multiple groups is fine, but when combined with `operator` or
  353. `minimum_should_match`, it can suffer from the <<operator-min,same problem>>
  354. as `most_fields` or `best_fields`.
  355. You can easily rewrite this query yourself as two separate `cross_fields`
  356. queries combined with a `bool` query, and apply the `minimum_should_match`
  357. parameter to just one of them:
  358. [source,js]
  359. --------------------------------------------------
  360. GET /_search
  361. {
  362. "query": {
  363. "bool": {
  364. "should": [
  365. {
  366. "multi_match" : {
  367. "query": "Will Smith",
  368. "type": "cross_fields",
  369. "fields": [ "first", "last" ],
  370. "minimum_should_match": "50%" <1>
  371. }
  372. },
  373. {
  374. "multi_match" : {
  375. "query": "Will Smith",
  376. "type": "cross_fields",
  377. "fields": [ "*.edge" ]
  378. }
  379. }
  380. ]
  381. }
  382. }
  383. }
  384. --------------------------------------------------
  385. // CONSOLE
  386. <1> Either `will` or `smith` must be present in either of the `first`
  387. or `last` fields
  388. You can force all fields into the same group by specifying the `analyzer`
  389. parameter in the query.
  390. [source,js]
  391. --------------------------------------------------
  392. GET /_search
  393. {
  394. "query": {
  395. "multi_match" : {
  396. "query": "Jon",
  397. "type": "cross_fields",
  398. "analyzer": "standard", <1>
  399. "fields": [ "first", "last", "*.edge" ]
  400. }
  401. }
  402. }
  403. --------------------------------------------------
  404. // CONSOLE
  405. <1> Use the `standard` analyzer for all fields.
  406. which will be executed as:
  407. blended("will", fields: [first, first.edge, last.edge, last])
  408. blended("smith", fields: [first, first.edge, last.edge, last])
  409. ===== `tie_breaker`
  410. By default, each per-term `blended` query will use the best score returned by
  411. any field in a group, then these scores are added together to give the final
  412. score. The `tie_breaker` parameter can change the default behaviour of the
  413. per-term `blended` queries. It accepts:
  414. [horizontal]
  415. `0.0`:: Take the single best score out of (eg) `first_name:will`
  416. and `last_name:will` (*default*)
  417. `1.0`:: Add together the scores for (eg) `first_name:will` and
  418. `last_name:will`
  419. `0.0 < n < 1.0`:: Take the single best score plus +tie_breaker+ multiplied
  420. by each of the scores from other matching fields.
  421. [IMPORTANT]
  422. [[crossfields-fuzziness]]
  423. .`cross_fields` and `fuzziness`
  424. ===================================================
  425. The `fuzziness` parameter cannot be used with the `cross_fields` type.
  426. ===================================================