|
@@ -12,10 +12,11 @@ import numpy as np
|
|
|
async def test_inference_engine(inference_engine_1: InferenceEngine, inference_engine_2: InferenceEngine, model_id: str, n_layers: int):
|
|
|
prompt = "In a single word only, what is the last name of the current president of the USA?"
|
|
|
resp_full = await inference_engine_1.infer_prompt("A", shard=Shard(model_id=model_id, start_layer=0, end_layer=n_layers - 1, n_layers=n_layers), prompt=prompt)
|
|
|
+ token_full = await inference_engine_1.sample(resp_full)
|
|
|
next_resp_full = await inference_engine_1.infer_tensor(
|
|
|
"A",
|
|
|
shard=Shard(model_id=model_id, start_layer=0, end_layer=n_layers - 1, n_layers=n_layers),
|
|
|
- input_data=resp_full,
|
|
|
+ input_data=token_full,
|
|
|
)
|
|
|
|
|
|
pp = n_layers // 2
|
|
@@ -25,10 +26,11 @@ async def test_inference_engine(inference_engine_1: InferenceEngine, inference_e
|
|
|
shard=Shard(model_id=model_id, start_layer=pp + 1, end_layer=n_layers - 1, n_layers=n_layers),
|
|
|
input_data=resp1,
|
|
|
)
|
|
|
+ tokens2 = await inference_engine_1.sample(resp2)
|
|
|
resp3 = await inference_engine_1.infer_tensor(
|
|
|
"B",
|
|
|
shard=Shard(model_id=model_id, start_layer=0, end_layer=pp, n_layers=n_layers),
|
|
|
- input_data=resp2,
|
|
|
+ input_data=tokens2,
|
|
|
)
|
|
|
resp4 = await inference_engine_2.infer_tensor(
|
|
|
"B",
|