|
@@ -6,12 +6,16 @@ from .sharded_utils import load_shard, get_image_from_str
|
|
|
from ..shard import Shard
|
|
|
from typing import Optional
|
|
|
from exo.download.shard_download import ShardDownloader
|
|
|
-
|
|
|
+import threading
|
|
|
+from concurrent.futures import ThreadPoolExecutor
|
|
|
+import asyncio
|
|
|
|
|
|
class MLXDynamicShardInferenceEngine(InferenceEngine):
|
|
|
def __init__(self, shard_downloader: ShardDownloader):
|
|
|
self.shard = None
|
|
|
self.shard_downloader = shard_downloader
|
|
|
+ self.model_lock = threading.Lock()
|
|
|
+ self.executor = ThreadPoolExecutor(max_workers=1)
|
|
|
|
|
|
async def infer_prompt(self, request_id: str, shard: Shard, prompt: str, image_str: Optional[str] = None, inference_state: Optional[str] = None) -> (np.ndarray, str, bool):
|
|
|
await self.ensure_shard(shard)
|
|
@@ -20,21 +24,33 @@ class MLXDynamicShardInferenceEngine(InferenceEngine):
|
|
|
inputs = self.tokenizer(prompt, image, return_tensors="np")
|
|
|
pixel_values = mx.array(inputs["pixel_values"])
|
|
|
input_ids = mx.array(inputs["input_ids"])
|
|
|
- output_data: np.ndarray = np.array(self.stateful_sharded_model.step(request_id, input_ids, pixel_values))
|
|
|
+ output_data = await self._run_inference(request_id, input_ids, pixel_values)
|
|
|
else:
|
|
|
- output_data: np.ndarray = np.array(self.stateful_sharded_model.step(request_id, mx.array(self.tokenizer.encode(prompt))))
|
|
|
+ input_ids = mx.array(self.tokenizer.encode(prompt))
|
|
|
+ output_data = await self._run_inference(request_id, input_ids)
|
|
|
return output_data, "", output_data.size == 1 and output_data.item() == self.tokenizer.eos_token_id
|
|
|
|
|
|
async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray, inference_state: Optional[str] = None) -> (np.ndarray, str, bool):
|
|
|
await self.ensure_shard(shard)
|
|
|
- output_data: np.ndarray = np.array(self.stateful_sharded_model.step(request_id, mx.array(input_data)))
|
|
|
+ input_tensor = mx.array(input_data)
|
|
|
+ output_data = await self._run_inference(request_id, input_tensor)
|
|
|
return output_data, "", output_data.size == 1 and output_data.item() == self.tokenizer.eos_token_id
|
|
|
|
|
|
+ async def _run_inference(self, request_id: str, *args):
|
|
|
+ with self.model_lock:
|
|
|
+ return await asyncio.get_event_loop().run_in_executor(
|
|
|
+ self.executor,
|
|
|
+ lambda: np.array(self.stateful_sharded_model.step(request_id, *args))
|
|
|
+ )
|
|
|
+
|
|
|
async def ensure_shard(self, shard: Shard):
|
|
|
if self.shard == shard:
|
|
|
return
|
|
|
|
|
|
model_path = await self.shard_downloader.ensure_shard(shard)
|
|
|
- model_shard, self.tokenizer = await load_shard(model_path, shard)
|
|
|
- self.stateful_sharded_model = StatefulShardedModel(shard, model_shard)
|
|
|
- self.shard = shard
|
|
|
+
|
|
|
+ with self.model_lock:
|
|
|
+ if self.shard != shard:
|
|
|
+ model_shard, self.tokenizer = await load_shard(model_path, shard)
|
|
|
+ self.stateful_sharded_model = StatefulShardedModel(shard, model_shard)
|
|
|
+ self.shard = shard
|