|
@@ -0,0 +1,539 @@
|
|
|
|
+import uuid
|
|
|
|
+import time
|
|
|
|
+import asyncio
|
|
|
|
+import json
|
|
|
|
+from pathlib import Path
|
|
|
|
+from transformers import AutoTokenizer
|
|
|
|
+from typing import List, Literal, Union, Dict
|
|
|
|
+from aiohttp import web
|
|
|
|
+import aiohttp_cors
|
|
|
|
+import traceback
|
|
|
|
+import signal
|
|
|
|
+from exo import DEBUG, VERSION
|
|
|
|
+from exo.download.download_progress import RepoProgressEvent
|
|
|
|
+from exo.helpers import PrefixDict, shutdown, get_exo_images_dir
|
|
|
|
+from exo.inference.tokenizers import resolve_tokenizer
|
|
|
|
+from exo.orchestration import Node
|
|
|
|
+from exo.models import build_base_shard, model_cards, get_repo, pretty_name, get_supported_models
|
|
|
|
+from exo.apputil import create_animation_mp4
|
|
|
|
+from typing import Callable, Optional
|
|
|
|
+from PIL import Image
|
|
|
|
+import numpy as np
|
|
|
|
+import base64
|
|
|
|
+from io import BytesIO
|
|
|
|
+import mlx.core as mx
|
|
|
|
+import tempfile
|
|
|
|
+
|
|
|
|
+class Message:
|
|
|
|
+ def __init__(self, role: str, content: Union[str, List[Dict[str, Union[str, Dict[str, str]]]]]):
|
|
|
|
+ self.role = role
|
|
|
|
+ self.content = content
|
|
|
|
+
|
|
|
|
+ def to_dict(self):
|
|
|
|
+ return {"role": self.role, "content": self.content}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class ChatCompletionRequest:
|
|
|
|
+ def __init__(self, model: str, messages: List[Message], temperature: float):
|
|
|
|
+ self.model = model
|
|
|
|
+ self.messages = messages
|
|
|
|
+ self.temperature = temperature
|
|
|
|
+
|
|
|
|
+ def to_dict(self):
|
|
|
|
+ return {"model": self.model, "messages": [message.to_dict() for message in self.messages], "temperature": self.temperature}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def generate_completion(
|
|
|
|
+ chat_request: ChatCompletionRequest,
|
|
|
|
+ tokenizer,
|
|
|
|
+ prompt: str,
|
|
|
|
+ request_id: str,
|
|
|
|
+ tokens: List[int],
|
|
|
|
+ stream: bool,
|
|
|
|
+ finish_reason: Union[Literal["length", "stop"], None],
|
|
|
|
+ object_type: Literal["chat.completion", "text_completion"],
|
|
|
|
+) -> dict:
|
|
|
|
+ completion = {
|
|
|
|
+ "id": f"chatcmpl-{request_id}",
|
|
|
|
+ "object": object_type,
|
|
|
|
+ "created": int(time.time()),
|
|
|
|
+ "model": chat_request.model,
|
|
|
|
+ "system_fingerprint": f"exo_{VERSION}",
|
|
|
|
+ "choices": [{
|
|
|
|
+ "index": 0,
|
|
|
|
+ "message": {"role": "assistant", "content": tokenizer.decode(tokens)},
|
|
|
|
+ "logprobs": None,
|
|
|
|
+ "finish_reason": finish_reason,
|
|
|
|
+ }],
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if not stream:
|
|
|
|
+ completion["usage"] = {
|
|
|
|
+ "prompt_tokens": len(tokenizer.encode(prompt)),
|
|
|
|
+ "completion_tokens": len(tokens),
|
|
|
|
+ "total_tokens": len(tokenizer.encode(prompt)) + len(tokens),
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ choice = completion["choices"][0]
|
|
|
|
+ if object_type.startswith("chat.completion"):
|
|
|
|
+ key_name = "delta" if stream else "message"
|
|
|
|
+ choice[key_name] = {"role": "assistant", "content": tokenizer.decode(tokens)}
|
|
|
|
+ elif object_type == "text_completion":
|
|
|
|
+ choice["text"] = tokenizer.decode(tokens)
|
|
|
|
+ else:
|
|
|
|
+ ValueError(f"Unsupported response type: {object_type}")
|
|
|
|
+
|
|
|
|
+ return completion
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def remap_messages(messages: List[Message]) -> List[Message]:
|
|
|
|
+ remapped_messages = []
|
|
|
|
+ last_image = None
|
|
|
|
+ for message in messages:
|
|
|
|
+ if not isinstance(message.content, list):
|
|
|
|
+ remapped_messages.append(message)
|
|
|
|
+ continue
|
|
|
|
+
|
|
|
|
+ remapped_content = []
|
|
|
|
+ for content in message.content:
|
|
|
|
+ if isinstance(content, dict):
|
|
|
|
+ if content.get("type") in ["image_url", "image"]:
|
|
|
|
+ image_url = content.get("image_url", {}).get("url") or content.get("image")
|
|
|
|
+ if image_url:
|
|
|
|
+ last_image = {"type": "image", "image": image_url}
|
|
|
|
+ remapped_content.append({"type": "text", "text": "[An image was uploaded but is not displayed here]"})
|
|
|
|
+ else:
|
|
|
|
+ remapped_content.append(content)
|
|
|
|
+ else:
|
|
|
|
+ remapped_content.append(content)
|
|
|
|
+ remapped_messages.append(Message(role=message.role, content=remapped_content))
|
|
|
|
+
|
|
|
|
+ if last_image:
|
|
|
|
+ # Replace the last image placeholder with the actual image content
|
|
|
|
+ for message in reversed(remapped_messages):
|
|
|
|
+ for i, content in enumerate(message.content):
|
|
|
|
+ if isinstance(content, dict):
|
|
|
|
+ if content.get("type") == "text" and content.get("text") == "[An image was uploaded but is not displayed here]":
|
|
|
|
+ message.content[i] = last_image
|
|
|
|
+ return remapped_messages
|
|
|
|
+
|
|
|
|
+ return remapped_messages
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def build_prompt(tokenizer, _messages: List[Message]):
|
|
|
|
+ messages = remap_messages(_messages)
|
|
|
|
+ prompt = tokenizer.apply_chat_template([m.to_dict() for m in messages], tokenize=False, add_generation_prompt=True)
|
|
|
|
+ for message in messages:
|
|
|
|
+ if not isinstance(message.content, list):
|
|
|
|
+ continue
|
|
|
|
+
|
|
|
|
+ return prompt
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def parse_message(data: dict):
|
|
|
|
+ if "role" not in data or "content" not in data:
|
|
|
|
+ raise ValueError(f"Invalid message: {data}. Must have 'role' and 'content'")
|
|
|
|
+ return Message(data["role"], data["content"])
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def parse_chat_request(data: dict, default_model: str):
|
|
|
|
+ return ChatCompletionRequest(
|
|
|
|
+ data.get("model", default_model),
|
|
|
|
+ [parse_message(msg) for msg in data["messages"]],
|
|
|
|
+ data.get("temperature", 0.0),
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class PromptSession:
|
|
|
|
+ def __init__(self, request_id: str, timestamp: int, prompt: str):
|
|
|
|
+ self.request_id = request_id
|
|
|
|
+ self.timestamp = timestamp
|
|
|
|
+ self.prompt = prompt
|
|
|
|
+
|
|
|
|
+class ChatGPTAPI:
|
|
|
|
+ def __init__(self, node: Node, inference_engine_classname: str, response_timeout: int = 90, on_chat_completion_request: Callable[[str, ChatCompletionRequest, str], None] = None, default_model: Optional[str] = None):
|
|
|
|
+ self.node = node
|
|
|
|
+ self.inference_engine_classname = inference_engine_classname
|
|
|
|
+ self.response_timeout = response_timeout
|
|
|
|
+ self.on_chat_completion_request = on_chat_completion_request
|
|
|
|
+ self.app = web.Application(client_max_size=100*1024*1024) # 100MB to support image upload
|
|
|
|
+ self.prompts: PrefixDict[str, PromptSession] = PrefixDict()
|
|
|
|
+ self.prev_token_lens: Dict[str, int] = {}
|
|
|
|
+ self.stream_tasks: Dict[str, asyncio.Task] = {}
|
|
|
|
+ self.default_model = default_model or "llama-3.2-1b"
|
|
|
|
+
|
|
|
|
+ cors = aiohttp_cors.setup(self.app)
|
|
|
|
+ cors_options = aiohttp_cors.ResourceOptions(
|
|
|
|
+ allow_credentials=True,
|
|
|
|
+ expose_headers="*",
|
|
|
|
+ allow_headers="*",
|
|
|
|
+ allow_methods="*",
|
|
|
|
+ )
|
|
|
|
+ cors.add(self.app.router.add_get("/models", self.handle_get_models), {"*": cors_options})
|
|
|
|
+ cors.add(self.app.router.add_get("/v1/models", self.handle_get_models), {"*": cors_options})
|
|
|
|
+ cors.add(self.app.router.add_post("/chat/token/encode", self.handle_post_chat_token_encode), {"*": cors_options})
|
|
|
|
+ cors.add(self.app.router.add_post("/v1/chat/token/encode", self.handle_post_chat_token_encode), {"*": cors_options})
|
|
|
|
+ cors.add(self.app.router.add_post("/chat/completions", self.handle_post_chat_completions), {"*": cors_options})
|
|
|
|
+ cors.add(self.app.router.add_post("/v1/chat/completions", self.handle_post_chat_completions), {"*": cors_options})
|
|
|
|
+ cors.add(self.app.router.add_post("/v1/image/generations", self.handle_post_image_generations), {"*": cors_options})
|
|
|
|
+ cors.add(self.app.router.add_get("/v1/download/progress", self.handle_get_download_progress), {"*": cors_options})
|
|
|
|
+ cors.add(self.app.router.add_get("/modelpool", self.handle_model_support), {"*": cors_options})
|
|
|
|
+ cors.add(self.app.router.add_get("/healthcheck", self.handle_healthcheck), {"*": cors_options})
|
|
|
|
+ cors.add(self.app.router.add_post("/quit", self.handle_quit), {"*": cors_options})
|
|
|
|
+ cors.add(self.app.router.add_post("/create_animation", self.handle_create_animation), {"*": cors_options})
|
|
|
|
+ cors.add(self.app.router.add_post("/download", self.handle_post_download), {"*": cors_options})
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ if "__compiled__" not in globals():
|
|
|
|
+ self.static_dir = Path(__file__).parent.parent/"tinychat"
|
|
|
|
+ self.app.router.add_get("/", self.handle_root)
|
|
|
|
+ self.app.router.add_static("/", self.static_dir, name="static")
|
|
|
|
+ self.app.router.add_static('/images/', get_exo_images_dir(), name='static_images')
|
|
|
|
+
|
|
|
|
+ self.app.middlewares.append(self.timeout_middleware)
|
|
|
|
+ self.app.middlewares.append(self.log_request)
|
|
|
|
+
|
|
|
|
+ async def handle_quit(self, request):
|
|
|
|
+ if DEBUG>=1: print("Received quit signal")
|
|
|
|
+ response = web.json_response({"detail": "Quit signal received"}, status=200)
|
|
|
|
+ await response.prepare(request)
|
|
|
|
+ await response.write_eof()
|
|
|
|
+ await shutdown(signal.SIGINT, asyncio.get_event_loop(), self.node.server)
|
|
|
|
+
|
|
|
|
+ async def timeout_middleware(self, app, handler):
|
|
|
|
+ async def middleware(request):
|
|
|
|
+ try:
|
|
|
|
+ return await asyncio.wait_for(handler(request), timeout=self.response_timeout)
|
|
|
|
+ except asyncio.TimeoutError:
|
|
|
|
+ return web.json_response({"detail": "Request timed out"}, status=408)
|
|
|
|
+
|
|
|
|
+ return middleware
|
|
|
|
+
|
|
|
|
+ async def log_request(self, app, handler):
|
|
|
|
+ async def middleware(request):
|
|
|
|
+ if DEBUG >= 2: print(f"Received request: {request.method} {request.path}")
|
|
|
|
+ return await handler(request)
|
|
|
|
+
|
|
|
|
+ return middleware
|
|
|
|
+
|
|
|
|
+ async def handle_root(self, request):
|
|
|
|
+ return web.FileResponse(self.static_dir/"index.html")
|
|
|
|
+
|
|
|
|
+ async def handle_healthcheck(self, request):
|
|
|
|
+ return web.json_response({"status": "ok"})
|
|
|
|
+
|
|
|
|
+ async def handle_model_support(self, request):
|
|
|
|
+ return web.json_response({
|
|
|
|
+ "model pool": {
|
|
|
|
+ model_name: pretty_name.get(model_name, model_name)
|
|
|
|
+ for model_name in get_supported_models(self.node.topology_inference_engines_pool)
|
|
|
|
+ }
|
|
|
|
+ })
|
|
|
|
+
|
|
|
|
+ async def handle_get_models(self, request):
|
|
|
|
+ return web.json_response([{"id": model_name, "object": "model", "owned_by": "exo", "ready": True} for model_name, _ in model_cards.items()])
|
|
|
|
+
|
|
|
|
+ async def handle_post_chat_token_encode(self, request):
|
|
|
|
+ data = await request.json()
|
|
|
|
+ shard = build_base_shard(self.default_model, self.inference_engine_classname)
|
|
|
|
+ messages = [parse_message(msg) for msg in data.get("messages", [])]
|
|
|
|
+ tokenizer = await resolve_tokenizer(get_repo(shard.model_id, self.inference_engine_classname))
|
|
|
|
+ return web.json_response({"length": len(build_prompt(tokenizer, messages)[0])})
|
|
|
|
+
|
|
|
|
+ async def handle_get_download_progress(self, request):
|
|
|
|
+ progress_data = {}
|
|
|
|
+ for node_id, progress_event in self.node.node_download_progress.items():
|
|
|
|
+ if isinstance(progress_event, RepoProgressEvent):
|
|
|
|
+ progress_data[node_id] = progress_event.to_dict()
|
|
|
|
+ else:
|
|
|
|
+ print(f"Unknown progress event type: {type(progress_event)}. {progress_event}")
|
|
|
|
+ return web.json_response(progress_data)
|
|
|
|
+
|
|
|
|
+ async def handle_post_chat_completions(self, request):
|
|
|
|
+ data = await request.json()
|
|
|
|
+ if DEBUG >= 2: print(f"Handling chat completions request from {request.remote}: {data}")
|
|
|
|
+ stream = data.get("stream", False)
|
|
|
|
+ chat_request = parse_chat_request(data, self.default_model)
|
|
|
|
+ if chat_request.model and chat_request.model.startswith("gpt-"): # to be compatible with ChatGPT tools, point all gpt- model requests to default model
|
|
|
|
+ chat_request.model = self.default_model
|
|
|
|
+ if not chat_request.model or chat_request.model not in model_cards:
|
|
|
|
+ if DEBUG >= 1: print(f"Invalid model: {chat_request.model}. Supported: {list(model_cards.keys())}. Defaulting to {self.default_model}")
|
|
|
|
+ chat_request.model = self.default_model
|
|
|
|
+ shard = build_base_shard(chat_request.model, self.inference_engine_classname)
|
|
|
|
+ if not shard:
|
|
|
|
+ supported_models = [model for model, info in model_cards.items() if self.inference_engine_classname in info.get("repo", {})]
|
|
|
|
+ return web.json_response(
|
|
|
|
+ {"detail": f"Unsupported model: {chat_request.model} with inference engine {self.inference_engine_classname}. Supported models for this engine: {supported_models}"},
|
|
|
|
+ status=400,
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ tokenizer = await resolve_tokenizer(get_repo(shard.model_id, self.inference_engine_classname))
|
|
|
|
+ if DEBUG >= 4: print(f"Resolved tokenizer: {tokenizer}")
|
|
|
|
+
|
|
|
|
+ prompt = build_prompt(tokenizer, chat_request.messages)
|
|
|
|
+ request_id = str(uuid.uuid4())
|
|
|
|
+ if self.on_chat_completion_request:
|
|
|
|
+ try:
|
|
|
|
+ self.on_chat_completion_request(request_id, chat_request, prompt)
|
|
|
|
+ except Exception as e:
|
|
|
|
+ if DEBUG >= 2: traceback.print_exc()
|
|
|
|
+ # request_id = None
|
|
|
|
+ # match = self.prompts.find_longest_prefix(prompt)
|
|
|
|
+ # if match and len(prompt) > len(match[1].prompt):
|
|
|
|
+ # if DEBUG >= 2:
|
|
|
|
+ # print(f"Prompt for request starts with previous prompt {len(match[1].prompt)} of {len(prompt)}: {match[1].prompt}")
|
|
|
|
+ # request_id = match[1].request_id
|
|
|
|
+ # self.prompts.add(prompt, PromptSession(request_id=request_id, timestamp=int(time.time()), prompt=prompt))
|
|
|
|
+ # # remove the matching prefix from the prompt
|
|
|
|
+ # prompt = prompt[len(match[1].prompt):]
|
|
|
|
+ # else:
|
|
|
|
+ # request_id = str(uuid.uuid4())
|
|
|
|
+ # self.prompts.add(prompt, PromptSession(request_id=request_id, timestamp=int(time.time()), prompt=prompt))
|
|
|
|
+
|
|
|
|
+ callback_id = f"chatgpt-api-wait-response-{request_id}"
|
|
|
|
+ callback = self.node.on_token.register(callback_id)
|
|
|
|
+
|
|
|
|
+ if DEBUG >= 2: print(f"Sending prompt from ChatGPT api {request_id=} {shard=} {prompt=}")
|
|
|
|
+
|
|
|
|
+ try:
|
|
|
|
+ await asyncio.wait_for(asyncio.shield(asyncio.create_task(self.node.process_prompt(shard, prompt, request_id=request_id))), timeout=self.response_timeout)
|
|
|
|
+
|
|
|
|
+ if DEBUG >= 2: print(f"Waiting for response to finish. timeout={self.response_timeout}s")
|
|
|
|
+
|
|
|
|
+ if stream:
|
|
|
|
+ response = web.StreamResponse(
|
|
|
|
+ status=200,
|
|
|
|
+ reason="OK",
|
|
|
|
+ headers={
|
|
|
|
+ "Content-Type": "text/event-stream",
|
|
|
|
+ "Cache-Control": "no-cache",
|
|
|
|
+ },
|
|
|
|
+ )
|
|
|
|
+ await response.prepare(request)
|
|
|
|
+
|
|
|
|
+ async def stream_result(_request_id: str, tokens: List[int], is_finished: bool):
|
|
|
|
+ prev_last_tokens_len = self.prev_token_lens.get(_request_id, 0)
|
|
|
|
+ self.prev_token_lens[_request_id] = max(prev_last_tokens_len, len(tokens))
|
|
|
|
+ new_tokens = tokens[prev_last_tokens_len:]
|
|
|
|
+ finish_reason = None
|
|
|
|
+ eos_token_id = tokenizer.special_tokens_map.get("eos_token_id") if hasattr(tokenizer, "_tokenizer") and isinstance(tokenizer._tokenizer,
|
|
|
|
+ AutoTokenizer) else getattr(tokenizer, "eos_token_id", None)
|
|
|
|
+ if len(new_tokens) > 0 and new_tokens[-1] == eos_token_id:
|
|
|
|
+ new_tokens = new_tokens[:-1]
|
|
|
|
+ if is_finished:
|
|
|
|
+ finish_reason = "stop"
|
|
|
|
+ if is_finished and not finish_reason:
|
|
|
|
+ finish_reason = "length"
|
|
|
|
+
|
|
|
|
+ completion = generate_completion(
|
|
|
|
+ chat_request,
|
|
|
|
+ tokenizer,
|
|
|
|
+ prompt,
|
|
|
|
+ request_id,
|
|
|
|
+ new_tokens,
|
|
|
|
+ stream,
|
|
|
|
+ finish_reason,
|
|
|
|
+ "chat.completion",
|
|
|
|
+ )
|
|
|
|
+ if DEBUG >= 2: print(f"Streaming completion: {completion}")
|
|
|
|
+ try:
|
|
|
|
+ await response.write(f"data: {json.dumps(completion)}\n\n".encode())
|
|
|
|
+ except Exception as e:
|
|
|
|
+ if DEBUG >= 2: print(f"Error streaming completion: {e}")
|
|
|
|
+ if DEBUG >= 2: traceback.print_exc()
|
|
|
|
+
|
|
|
|
+ def on_result(_request_id: str, tokens: List[int], is_finished: bool):
|
|
|
|
+ if _request_id == request_id: self.stream_tasks[_request_id] = asyncio.create_task(stream_result(_request_id, tokens, is_finished))
|
|
|
|
+
|
|
|
|
+ return _request_id == request_id and is_finished
|
|
|
|
+
|
|
|
|
+ _, tokens, _ = await callback.wait(on_result, timeout=self.response_timeout)
|
|
|
|
+ if request_id in self.stream_tasks: # in case there is still a stream task running, wait for it to complete
|
|
|
|
+ if DEBUG >= 2: print("Pending stream task. Waiting for stream task to complete.")
|
|
|
|
+ try:
|
|
|
|
+ await asyncio.wait_for(self.stream_tasks[request_id], timeout=30)
|
|
|
|
+ except asyncio.TimeoutError:
|
|
|
|
+ print("WARNING: Stream task timed out. This should not happen.")
|
|
|
|
+ await response.write_eof()
|
|
|
|
+ return response
|
|
|
|
+ else:
|
|
|
|
+ _, tokens, _ = await callback.wait(
|
|
|
|
+ lambda _request_id, tokens, is_finished: _request_id == request_id and is_finished,
|
|
|
|
+ timeout=self.response_timeout,
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ finish_reason = "length"
|
|
|
|
+ eos_token_id = tokenizer.special_tokens_map.get("eos_token_id") if isinstance(getattr(tokenizer, "_tokenizer", None), AutoTokenizer) else tokenizer.eos_token_id
|
|
|
|
+ if DEBUG >= 2: print(f"Checking if end of tokens result {tokens[-1]=} is {eos_token_id=}")
|
|
|
|
+ if tokens[-1] == eos_token_id:
|
|
|
|
+ tokens = tokens[:-1]
|
|
|
|
+ finish_reason = "stop"
|
|
|
|
+
|
|
|
|
+ return web.json_response(generate_completion(chat_request, tokenizer, prompt, request_id, tokens, stream, finish_reason, "chat.completion"))
|
|
|
|
+ except asyncio.TimeoutError:
|
|
|
|
+ return web.json_response({"detail": "Response generation timed out"}, status=408)
|
|
|
|
+ except Exception as e:
|
|
|
|
+ if DEBUG >= 2: traceback.print_exc()
|
|
|
|
+ return web.json_response({"detail": f"Error processing prompt (see logs with DEBUG>=2): {str(e)}"}, status=500)
|
|
|
|
+ finally:
|
|
|
|
+ deregistered_callback = self.node.on_token.deregister(callback_id)
|
|
|
|
+ if DEBUG >= 2: print(f"Deregister {callback_id=} {deregistered_callback=}")
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ async def handle_post_image_generations(self, request):
|
|
|
|
+ data = await request.json()
|
|
|
|
+
|
|
|
|
+ if DEBUG >= 2: print(f"Handling chat completions request from {request.remote}: {data}")
|
|
|
|
+ stream = data.get("stream", False)
|
|
|
|
+ model = data.get("model", "")
|
|
|
|
+ prompt = data.get("prompt", "")
|
|
|
|
+ image_url = data.get("image_url", "")
|
|
|
|
+ print(f"model: {model}, prompt: {prompt}, stream: {stream}")
|
|
|
|
+ shard = build_base_shard(model, self.inference_engine_classname)
|
|
|
|
+ print(f"shard: {shard}")
|
|
|
|
+ if not shard:
|
|
|
|
+ return web.json_response({"error": f"Unsupported model: {model} with inference engine {self.inference_engine_classname}"}, status=400)
|
|
|
|
+
|
|
|
|
+ request_id = str(uuid.uuid4())
|
|
|
|
+ callback_id = f"chatgpt-api-wait-response-{request_id}"
|
|
|
|
+ callback = self.node.on_token.register(callback_id)
|
|
|
|
+ try:
|
|
|
|
+ if image_url != "" and image_url != None:
|
|
|
|
+ img = self.base64_decode(image_url)
|
|
|
|
+ else:
|
|
|
|
+ img = None
|
|
|
|
+ await asyncio.wait_for(asyncio.shield(asyncio.create_task(self.node.process_prompt(shard, prompt, request_id=request_id, inference_state={"image": img}))), timeout=self.response_timeout)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ response = web.StreamResponse(status=200, reason='OK', headers={'Content-Type': 'application/octet-stream',"Cache-Control": "no-cache",})
|
|
|
|
+ await response.prepare(request)
|
|
|
|
+
|
|
|
|
+ def get_progress_bar(current_step, total_steps, bar_length=50):
|
|
|
|
+ # Calculate the percentage of completion
|
|
|
|
+ percent = float(current_step) / total_steps
|
|
|
|
+ # Calculate the number of hashes to display
|
|
|
|
+ arrow = '-' * int(round(percent * bar_length) - 1) + '>'
|
|
|
|
+ spaces = ' ' * (bar_length - len(arrow))
|
|
|
|
+
|
|
|
|
+ # Create the progress bar string
|
|
|
|
+ progress_bar = f'Progress: [{arrow}{spaces}] {int(percent * 100)}% ({current_step}/{total_steps})'
|
|
|
|
+ return progress_bar
|
|
|
|
+
|
|
|
|
+ async def stream_image(_request_id: str, result, is_finished: bool):
|
|
|
|
+ if isinstance(result, list):
|
|
|
|
+ await response.write(json.dumps({'progress': get_progress_bar((result[0]), (result[1]))}).encode('utf-8') + b'\n')
|
|
|
|
+
|
|
|
|
+ elif isinstance(result, np.ndarray):
|
|
|
|
+ im = Image.fromarray(np.array(result))
|
|
|
|
+ images_folder = get_exo_images_dir()
|
|
|
|
+ # Save the image to a file
|
|
|
|
+ image_filename = f"{_request_id}.png"
|
|
|
|
+ image_path = images_folder / image_filename
|
|
|
|
+ im.save(image_path)
|
|
|
|
+ image_url = request.app.router['static_images'].url_for(filename=image_filename)
|
|
|
|
+ base_url = f"{request.scheme}://{request.host}"
|
|
|
|
+ # Construct the full URL correctly
|
|
|
|
+ full_image_url = base_url + str(image_url)
|
|
|
|
+
|
|
|
|
+ await response.write(json.dumps({'images': [{'url': str(full_image_url), 'content_type': 'image/png'}]}).encode('utf-8') + b'\n')
|
|
|
|
+ if is_finished:
|
|
|
|
+ await response.write_eof()
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ stream_task = None
|
|
|
|
+ def on_result(_request_id: str, result, is_finished: bool):
|
|
|
|
+ nonlocal stream_task
|
|
|
|
+ stream_task = asyncio.create_task(stream_image(_request_id, result, is_finished))
|
|
|
|
+ return _request_id == request_id and is_finished
|
|
|
|
+
|
|
|
|
+ await callback.wait(on_result, timeout=self.response_timeout*10)
|
|
|
|
+
|
|
|
|
+ if stream_task:
|
|
|
|
+ # Wait for the stream task to complete before returning
|
|
|
|
+ await stream_task
|
|
|
|
+
|
|
|
|
+ return response
|
|
|
|
+
|
|
|
|
+ except Exception as e:
|
|
|
|
+ if DEBUG >= 2: traceback.print_exc()
|
|
|
|
+ return web.json_response({"detail": f"Error processing prompt (see logs with DEBUG>=2): {str(e)}"}, status=500)
|
|
|
|
+
|
|
|
|
+ async def handle_create_animation(self, request):
|
|
|
|
+ try:
|
|
|
|
+ data = await request.json()
|
|
|
|
+ replacement_image_path = data.get("replacement_image_path")
|
|
|
|
+ device_name = data.get("device_name", "Local Device")
|
|
|
|
+ prompt_text = data.get("prompt", "")
|
|
|
|
+
|
|
|
|
+ if DEBUG >= 2: print(f"Creating animation with params: replacement_image={replacement_image_path}, device={device_name}, prompt={prompt_text}")
|
|
|
|
+
|
|
|
|
+ if not replacement_image_path:
|
|
|
|
+ return web.json_response({"error": "replacement_image_path is required"}, status=400)
|
|
|
|
+
|
|
|
|
+ # Create temp directory if it doesn't exist
|
|
|
|
+ tmp_dir = Path(tempfile.gettempdir())/"exo_animations"
|
|
|
|
+ tmp_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
+
|
|
|
|
+ # Generate unique output filename in temp directory
|
|
|
|
+ output_filename = f"animation_{uuid.uuid4()}.mp4"
|
|
|
|
+ output_path = str(tmp_dir/output_filename)
|
|
|
|
+
|
|
|
|
+ if DEBUG >= 2: print(f"Animation temp directory: {tmp_dir}, output file: {output_path}, directory exists: {tmp_dir.exists()}, directory permissions: {oct(tmp_dir.stat().st_mode)[-3:]}")
|
|
|
|
+
|
|
|
|
+ # Create the animation
|
|
|
|
+ create_animation_mp4(
|
|
|
|
+ replacement_image_path,
|
|
|
|
+ output_path,
|
|
|
|
+ device_name,
|
|
|
|
+ prompt_text
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ return web.json_response({
|
|
|
|
+ "status": "success",
|
|
|
|
+ "output_path": output_path
|
|
|
|
+ })
|
|
|
|
+
|
|
|
|
+ except Exception as e:
|
|
|
|
+ if DEBUG >= 2: traceback.print_exc()
|
|
|
|
+ return web.json_response({"error": str(e)}, status=500)
|
|
|
|
+
|
|
|
|
+ async def handle_post_download(self, request):
|
|
|
|
+ try:
|
|
|
|
+ data = await request.json()
|
|
|
|
+ model_name = data.get("model")
|
|
|
|
+ if not model_name: return web.json_response({"error": "model parameter is required"}, status=400)
|
|
|
|
+ if model_name not in model_cards: return web.json_response({"error": f"Invalid model: {model_name}. Supported models: {list(model_cards.keys())}"}, status=400)
|
|
|
|
+ shard = build_base_shard(model_name, self.inference_engine_classname)
|
|
|
|
+ if not shard: return web.json_response({"error": f"Could not build shard for model {model_name}"}, status=400)
|
|
|
|
+ asyncio.create_task(self.node.inference_engine.ensure_shard(shard))
|
|
|
|
+
|
|
|
|
+ return web.json_response({
|
|
|
|
+ "status": "success",
|
|
|
|
+ "message": f"Download started for model: {model_name}"
|
|
|
|
+ })
|
|
|
|
+ except Exception as e:
|
|
|
|
+ if DEBUG >= 2: traceback.print_exc()
|
|
|
|
+ return web.json_response({"error": str(e)}, status=500)
|
|
|
|
+
|
|
|
|
+ async def run(self, host: str = "0.0.0.0", port: int = 52415):
|
|
|
|
+ runner = web.AppRunner(self.app)
|
|
|
|
+ await runner.setup()
|
|
|
|
+ site = web.TCPSite(runner, host, port)
|
|
|
|
+ await site.start()
|
|
|
|
+
|
|
|
|
+ def base64_decode(self, base64_string):
|
|
|
|
+ #decode and reshape image
|
|
|
|
+ if base64_string.startswith('data:image'):
|
|
|
|
+ base64_string = base64_string.split(',')[1]
|
|
|
|
+ image_data = base64.b64decode(base64_string)
|
|
|
|
+ img = Image.open(BytesIO(image_data))
|
|
|
|
+ W, H = (dim - dim % 64 for dim in (img.width, img.height))
|
|
|
|
+ if W != img.width or H != img.height:
|
|
|
|
+ print(f"Warning: image shape is not divisible by 64, downsampling to {W}x{H}")
|
|
|
|
+ img = img.resize((W, H), Image.NEAREST) # use desired downsampling filter
|
|
|
|
+ img = mx.array(np.array(img))
|
|
|
|
+ img = (img[:, :, :3].astype(mx.float32) / 255) * 2 - 1
|
|
|
|
+ img = img[None]
|
|
|
|
+ return img
|
|
|
|
+
|