|
@@ -17,7 +17,15 @@ from exo.topology.ring_memory_weighted_partitioning_strategy import RingMemoryWe
|
|
|
from exo.api import ChatGPTAPI
|
|
|
from exo.download.shard_download import ShardDownloader, RepoProgressEvent, NoopShardDownloader
|
|
|
from exo.download.hf.hf_shard_download import HFShardDownloader
|
|
|
-from exo.helpers import print_yellow_exo, find_available_port, DEBUG, get_system_info, get_or_create_node_id, get_all_ip_addresses, terminal_link
|
|
|
+from exo.helpers import (
|
|
|
+ print_yellow_exo,
|
|
|
+ find_available_port,
|
|
|
+ DEBUG,
|
|
|
+ get_system_info,
|
|
|
+ get_or_create_node_id,
|
|
|
+ get_all_ip_addresses,
|
|
|
+ terminal_link,
|
|
|
+)
|
|
|
from exo.inference.shard import Shard
|
|
|
from exo.inference.inference_engine import get_inference_engine, InferenceEngine
|
|
|
from exo.inference.dummy_inference_engine import DummyInferenceEngine
|
|
@@ -26,9 +34,9 @@ from exo.orchestration.node import Node
|
|
|
from exo.models import model_base_shards
|
|
|
from exo.viz.topology_viz import TopologyViz
|
|
|
|
|
|
-# parse args
|
|
|
-parser = argparse.ArgumentParser(description="Initialize GRPC Discovery")
|
|
|
-parser.add_argument("command", nargs="?", choices=["run"], help="Command to run")
|
|
|
+# Parse arguments
|
|
|
+parser = argparse.ArgumentParser(description="Initialize GRPC Discovery and Run Inference")
|
|
|
+parser.add_argument("command", nargs="?", choices=["run"], default="run", help="Command to run (default: run)")
|
|
|
parser.add_argument("model_name", nargs="?", help="Model name to run")
|
|
|
parser.add_argument("--node-id", type=str, default=None, help="Node ID")
|
|
|
parser.add_argument("--node-host", type=str, default="0.0.0.0", help="Node host")
|
|
@@ -38,97 +46,177 @@ parser.add_argument("--download-quick-check", action="store_true", help="Quick c
|
|
|
parser.add_argument("--max-parallel-downloads", type=int, default=4, help="Max parallel downloads for model shards download")
|
|
|
parser.add_argument("--prometheus-client-port", type=int, default=None, help="Prometheus client port")
|
|
|
parser.add_argument("--broadcast-port", type=int, default=5678, help="Broadcast port for discovery")
|
|
|
-parser.add_argument("--discovery-module", type=str, choices=["udp", "tailscale", "manual"], default="udp", help="Discovery module to use")
|
|
|
+parser.add_argument(
|
|
|
+ "--discovery-module",
|
|
|
+ type=str,
|
|
|
+ choices=["udp", "tailscale", "manual"],
|
|
|
+ default="udp",
|
|
|
+ help="Discovery module to use",
|
|
|
+)
|
|
|
parser.add_argument("--discovery-timeout", type=int, default=30, help="Discovery timeout in seconds")
|
|
|
parser.add_argument("--discovery-config-path", type=str, default=None, help="Path to discovery config json file")
|
|
|
parser.add_argument("--wait-for-peers", type=int, default=0, help="Number of peers to wait to connect to before starting")
|
|
|
parser.add_argument("--chatgpt-api-port", type=int, default=8000, help="ChatGPT API port")
|
|
|
-parser.add_argument("--chatgpt-api-response-timeout", type=int, default=90, help="ChatGPT API response timeout in seconds")
|
|
|
+parser.add_argument(
|
|
|
+ "--chatgpt-api-response-timeout",
|
|
|
+ type=int,
|
|
|
+ default=90,
|
|
|
+ help="ChatGPT API response timeout in seconds",
|
|
|
+)
|
|
|
parser.add_argument("--max-generate-tokens", type=int, default=10000, help="Max tokens to generate in each request")
|
|
|
-parser.add_argument("--inference-engine", type=str, default=None, help="Inference engine to use (mlx, tinygrad, or dummy)")
|
|
|
+parser.add_argument(
|
|
|
+ "--inference-engine",
|
|
|
+ type=str,
|
|
|
+ choices=["mlx", "tinygrad", "dummy"],
|
|
|
+ default=None,
|
|
|
+ help="Inference engine to use (mlx, tinygrad, or dummy)",
|
|
|
+)
|
|
|
parser.add_argument("--disable-tui", action=argparse.BooleanOptionalAction, help="Disable TUI")
|
|
|
parser.add_argument("--run-model", type=str, help="Specify a model to run directly")
|
|
|
-parser.add_argument("--prompt", type=str, help="Prompt for the model when using --run-model", default="Who are you?")
|
|
|
+parser.add_argument(
|
|
|
+ "--prompt",
|
|
|
+ type=str,
|
|
|
+ help="Prompt for the model when using --run-model",
|
|
|
+ default="Who are you?",
|
|
|
+)
|
|
|
parser.add_argument("--tailscale-api-key", type=str, default=None, help="Tailscale API key")
|
|
|
parser.add_argument("--tailnet-name", type=str, default=None, help="Tailnet name")
|
|
|
args = parser.parse_args()
|
|
|
print(f"Selected inference engine: {args.inference_engine}")
|
|
|
|
|
|
-
|
|
|
print_yellow_exo()
|
|
|
|
|
|
-
|
|
|
system_info = get_system_info()
|
|
|
print(f"Detected system: {system_info}")
|
|
|
|
|
|
-shard_downloader: ShardDownloader = HFShardDownloader(quick_check=args.download_quick_check, max_parallel_downloads=args.max_parallel_downloads) if args.inference_engine != "dummy" else NoopShardDownloader()
|
|
|
+# Determine shard downloader based on inference engine
|
|
|
+shard_downloader: ShardDownloader = (
|
|
|
+ HFShardDownloader(quick_check=args.download_quick_check, max_parallel_downloads=args.max_parallel_downloads)
|
|
|
+ if args.inference_engine != "dummy"
|
|
|
+ else NoopShardDownloader()
|
|
|
+)
|
|
|
+
|
|
|
+# Determine inference engine name
|
|
|
inference_engine_name = args.inference_engine or ("mlx" if system_info == "Apple Silicon Mac" else "tinygrad")
|
|
|
print(f"Inference engine name after selection: {inference_engine_name}")
|
|
|
|
|
|
inference_engine = get_inference_engine(inference_engine_name, shard_downloader)
|
|
|
-print(f"Using inference engine: {inference_engine.__class__.__name__} with shard downloader: {shard_downloader.__class__.__name__}")
|
|
|
+print(
|
|
|
+ f"Using inference engine: {inference_engine.__class__.__name__} with shard downloader: {shard_downloader.__class__.__name__}"
|
|
|
+)
|
|
|
+
|
|
|
+# Select the first model as default if no model is specified
|
|
|
+available_models = list(model_base_shards.keys())
|
|
|
+
|
|
|
+if not available_models:
|
|
|
+ raise ValueError("No models available in model_base_shards.")
|
|
|
+
|
|
|
+default_model = available_models[0] # Retrieve the first model
|
|
|
+
|
|
|
+if DEBUG >= 1:
|
|
|
+ print(f"Available models: {available_models}")
|
|
|
+ print(f"Default model selected: {default_model}")
|
|
|
|
|
|
if args.node_port is None:
|
|
|
- args.node_port = find_available_port(args.node_host)
|
|
|
- if DEBUG >= 1: print(f"Using available port: {args.node_port}")
|
|
|
+ args.node_port = find_available_port(args.node_host)
|
|
|
+ if DEBUG >= 1:
|
|
|
+ print(f"Using available port: {args.node_port}")
|
|
|
|
|
|
args.node_id = args.node_id or get_or_create_node_id()
|
|
|
chatgpt_api_endpoints = [f"http://{ip}:{args.chatgpt_api_port}/v1/chat/completions" for ip in get_all_ip_addresses()]
|
|
|
web_chat_urls = [f"http://{ip}:{args.chatgpt_api_port}" for ip in get_all_ip_addresses()]
|
|
|
if DEBUG >= 0:
|
|
|
- print("Chat interface started:")
|
|
|
- for web_chat_url in web_chat_urls:
|
|
|
- print(f" - {terminal_link(web_chat_url)}")
|
|
|
- print("ChatGPT API endpoint served at:")
|
|
|
- for chatgpt_api_endpoint in chatgpt_api_endpoints:
|
|
|
- print(f" - {terminal_link(chatgpt_api_endpoint)}")
|
|
|
+ print("Chat interface started:")
|
|
|
+ for web_chat_url in web_chat_urls:
|
|
|
+ print(f" - {terminal_link(web_chat_url)}")
|
|
|
+ print("ChatGPT API endpoint served at:")
|
|
|
+ for chatgpt_api_endpoint in chatgpt_api_endpoints:
|
|
|
+ print(f" - {terminal_link(chatgpt_api_endpoint)}")
|
|
|
|
|
|
+# Initialize discovery based on the selected discovery module
|
|
|
if args.discovery_module == "udp":
|
|
|
- discovery = UDPDiscovery(args.node_id, args.node_port, args.listen_port, args.broadcast_port, lambda peer_id, address, device_capabilities: GRPCPeerHandle(peer_id, address, device_capabilities), discovery_timeout=args.discovery_timeout)
|
|
|
+ discovery = UDPDiscovery(
|
|
|
+ args.node_id,
|
|
|
+ args.node_port,
|
|
|
+ args.listen_port,
|
|
|
+ args.broadcast_port,
|
|
|
+ lambda peer_id, address, device_capabilities: GRPCPeerHandle(peer_id, address, device_capabilities),
|
|
|
+ discovery_timeout=args.discovery_timeout,
|
|
|
+ )
|
|
|
elif args.discovery_module == "tailscale":
|
|
|
- discovery = TailscaleDiscovery(args.node_id, args.node_port, lambda peer_id, address, device_capabilities: GRPCPeerHandle(peer_id, address, device_capabilities), discovery_timeout=args.discovery_timeout, tailscale_api_key=args.tailscale_api_key, tailnet=args.tailnet_name)
|
|
|
+ discovery = TailscaleDiscovery(
|
|
|
+ args.node_id,
|
|
|
+ args.node_port,
|
|
|
+ lambda peer_id, address, device_capabilities: GRPCPeerHandle(peer_id, address, device_capabilities),
|
|
|
+ discovery_timeout=args.discovery_timeout,
|
|
|
+ tailscale_api_key=args.tailscale_api_key,
|
|
|
+ tailnet=args.tailnet_name,
|
|
|
+ )
|
|
|
elif args.discovery_module == "manual":
|
|
|
- if not args.discovery_config_path:
|
|
|
- raise ValueError(f"--discovery-config-path is required when using manual discovery. Please provide a path to a config json file.")
|
|
|
- discovery = ManualDiscovery(args.discovery_config_path, args.node_id, create_peer_handle=lambda peer_id, address, device_capabilities: GRPCPeerHandle(peer_id, address, device_capabilities))
|
|
|
+ if not args.discovery_config_path:
|
|
|
+ raise ValueError(
|
|
|
+ "--discovery-config-path is required when using manual discovery. Please provide a path to a config json file."
|
|
|
+ )
|
|
|
+ discovery = ManualDiscovery(
|
|
|
+ args.discovery_config_path,
|
|
|
+ args.node_id,
|
|
|
+ create_peer_handle=lambda peer_id, address, device_capabilities: GRPCPeerHandle(peer_id, address, device_capabilities),
|
|
|
+ )
|
|
|
+
|
|
|
+# Initialize topology visualization if not disabled
|
|
|
topology_viz = TopologyViz(chatgpt_api_endpoints=chatgpt_api_endpoints, web_chat_urls=web_chat_urls) if not args.disable_tui else None
|
|
|
+
|
|
|
+# Initialize the node
|
|
|
node = StandardNode(
|
|
|
- args.node_id,
|
|
|
- None,
|
|
|
- inference_engine,
|
|
|
- discovery,
|
|
|
- partitioning_strategy=RingMemoryWeightedPartitioningStrategy(),
|
|
|
- max_generate_tokens=args.max_generate_tokens,
|
|
|
- topology_viz=topology_viz,
|
|
|
- shard_downloader=shard_downloader
|
|
|
+ args.node_id,
|
|
|
+ None,
|
|
|
+ inference_engine,
|
|
|
+ discovery,
|
|
|
+ partitioning_strategy=RingMemoryWeightedPartitioningStrategy(),
|
|
|
+ max_generate_tokens=args.max_generate_tokens,
|
|
|
+ topology_viz=topology_viz,
|
|
|
+ shard_downloader=shard_downloader,
|
|
|
)
|
|
|
+
|
|
|
+# Initialize the GRPC server
|
|
|
server = GRPCServer(node, args.node_host, args.node_port)
|
|
|
node.server = server
|
|
|
+
|
|
|
+# Initialize the ChatGPT API
|
|
|
api = ChatGPTAPI(
|
|
|
- node,
|
|
|
- inference_engine.__class__.__name__,
|
|
|
- response_timeout=args.chatgpt_api_response_timeout,
|
|
|
- on_chat_completion_request=lambda req_id, __, prompt: topology_viz.update_prompt(req_id, prompt) if topology_viz else None
|
|
|
+ node,
|
|
|
+ inference_engine.__class__.__name__,
|
|
|
+ response_timeout=args.chatgpt_api_response_timeout,
|
|
|
+ on_chat_completion_request=lambda req_id, __, prompt: topology_viz.update_prompt(req_id, prompt) if topology_viz else None,
|
|
|
)
|
|
|
+
|
|
|
+# Register token update handler for topology visualization
|
|
|
node.on_token.register("update_topology_viz").on_next(
|
|
|
- lambda req_id, tokens, __: topology_viz.update_prompt_output(req_id, inference_engine.tokenizer.decode(tokens)) if topology_viz and hasattr(inference_engine, "tokenizer") else None
|
|
|
+ lambda req_id, tokens, __: topology_viz.update_prompt_output(req_id, inference_engine.tokenizer.decode(tokens))
|
|
|
+ if topology_viz and hasattr(inference_engine, "tokenizer")
|
|
|
+ else None
|
|
|
)
|
|
|
+
|
|
|
def preemptively_start_download(request_id: str, opaque_status: str):
|
|
|
- try:
|
|
|
- status = json.loads(opaque_status)
|
|
|
- if status.get("type") == "node_status" and status.get("status") == "start_process_prompt":
|
|
|
- current_shard = node.get_current_shard(Shard.from_dict(status.get("shard")))
|
|
|
- if DEBUG >= 2: print(f"Preemptively starting download for {current_shard}")
|
|
|
- asyncio.create_task(shard_downloader.ensure_shard(current_shard))
|
|
|
- except Exception as e:
|
|
|
- if DEBUG >= 2:
|
|
|
- print(f"Failed to preemptively start download: {e}")
|
|
|
- traceback.print_exc()
|
|
|
+ try:
|
|
|
+ status = json.loads(opaque_status)
|
|
|
+ if status.get("type") == "node_status" and status.get("status") == "start_process_prompt":
|
|
|
+ current_shard = node.get_current_shard(Shard.from_dict(status.get("shard")))
|
|
|
+ if DEBUG >= 2:
|
|
|
+ print(f"Preemptively starting download for {current_shard}")
|
|
|
+ asyncio.create_task(shard_downloader.ensure_shard(current_shard))
|
|
|
+ except Exception as e:
|
|
|
+ if DEBUG >= 2:
|
|
|
+ print(f"Failed to preemptively start download: {e}")
|
|
|
+ traceback.print_exc()
|
|
|
+
|
|
|
node.on_opaque_status.register("start_download").on_next(preemptively_start_download)
|
|
|
|
|
|
+# Start Prometheus metrics server if specified
|
|
|
if args.prometheus_client_port:
|
|
|
- from exo.stats.metrics import start_metrics_server
|
|
|
- start_metrics_server(node, args.prometheus_client_port)
|
|
|
+ from exo.stats.metrics import start_metrics_server
|
|
|
+
|
|
|
+ start_metrics_server(node, args.prometheus_client_port)
|
|
|
|
|
|
last_broadcast_time = 0
|
|
|
|
|
@@ -137,88 +225,101 @@ def throttled_broadcast(shard: Shard, event: RepoProgressEvent):
|
|
|
current_time = time.time()
|
|
|
if event.status == "complete" or current_time - last_broadcast_time >= 0.1:
|
|
|
last_broadcast_time = current_time
|
|
|
- asyncio.create_task(node.broadcast_opaque_status("", json.dumps({
|
|
|
- "type": "download_progress",
|
|
|
- "node_id": node.id,
|
|
|
- "progress": event.to_dict()
|
|
|
- })))
|
|
|
+ asyncio.create_task(
|
|
|
+ node.broadcast_opaque_status(
|
|
|
+ "",
|
|
|
+ json.dumps(
|
|
|
+ {
|
|
|
+ "type": "download_progress",
|
|
|
+ "node_id": node.id,
|
|
|
+ "progress": event.to_dict(),
|
|
|
+ }
|
|
|
+ ),
|
|
|
+ )
|
|
|
+ )
|
|
|
|
|
|
shard_downloader.on_progress.register("broadcast").on_next(throttled_broadcast)
|
|
|
|
|
|
-
|
|
|
-async def shutdown(signal, loop):
|
|
|
- """Gracefully shutdown the server and close the asyncio loop."""
|
|
|
- print(f"Received exit signal {signal.name}...")
|
|
|
- print("Thank you for using exo.")
|
|
|
- print_yellow_exo()
|
|
|
- server_tasks = [t for t in asyncio.all_tasks() if t is not asyncio.current_task()]
|
|
|
- [task.cancel() for task in server_tasks]
|
|
|
- print(f"Cancelling {len(server_tasks)} outstanding tasks")
|
|
|
- await asyncio.gather(*server_tasks, return_exceptions=True)
|
|
|
- await server.stop()
|
|
|
- loop.stop()
|
|
|
+async def shutdown(signal_name, loop):
|
|
|
+ """Gracefully shutdown the server and close the asyncio loop."""
|
|
|
+ print(f"Received exit signal {signal_name}...")
|
|
|
+ print("Thank you for using exo.")
|
|
|
+ print_yellow_exo()
|
|
|
+ server_tasks = [t for t in asyncio.all_tasks() if t is not asyncio.current_task()]
|
|
|
+ [task.cancel() for task in server_tasks]
|
|
|
+ print(f"Cancelling {len(server_tasks)} outstanding tasks")
|
|
|
+ await asyncio.gather(*server_tasks, return_exceptions=True)
|
|
|
+ await server.stop()
|
|
|
+ loop.stop()
|
|
|
|
|
|
async def run_model_cli(node: Node, inference_engine: InferenceEngine, model_name: str, prompt: str):
|
|
|
- shard = model_base_shards.get(model_name, {}).get(inference_engine.__class__.__name__)
|
|
|
- if not shard:
|
|
|
- print(f"Error: Unsupported model '{model_name}' for inference engine {inference_engine.__class__.__name__}")
|
|
|
- return
|
|
|
- tokenizer = await resolve_tokenizer(shard.model_id)
|
|
|
- request_id = str(uuid.uuid4())
|
|
|
- callback_id = f"cli-wait-response-{request_id}"
|
|
|
- callback = node.on_token.register(callback_id)
|
|
|
- if topology_viz:
|
|
|
- topology_viz.update_prompt(request_id, prompt)
|
|
|
- prompt = tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True)
|
|
|
-
|
|
|
- try:
|
|
|
- print(f"Processing prompt: {prompt}")
|
|
|
- await node.process_prompt(shard, prompt, None, request_id=request_id)
|
|
|
-
|
|
|
- _, tokens, _ = await callback.wait(lambda _request_id, tokens, is_finished: _request_id == request_id and is_finished, timeout=300)
|
|
|
-
|
|
|
- print("\nGenerated response:")
|
|
|
- print(tokenizer.decode(tokens))
|
|
|
- except Exception as e:
|
|
|
- print(f"Error processing prompt: {str(e)}")
|
|
|
- traceback.print_exc()
|
|
|
- finally:
|
|
|
- node.on_token.deregister(callback_id)
|
|
|
+ shard = model_base_shards.get(model_name, {}).get(inference_engine.__class__.__name__)
|
|
|
+ if not shard:
|
|
|
+ print(f"Error: Unsupported model '{model_name}' for inference engine {inference_engine.__class__.__name__}")
|
|
|
+ return
|
|
|
+ tokenizer = await resolve_tokenizer(shard.model_id)
|
|
|
+ request_id = str(uuid.uuid4())
|
|
|
+ callback_id = f"cli-wait-response-{request_id}"
|
|
|
+ callback = node.on_token.register(callback_id)
|
|
|
+ if topology_viz:
|
|
|
+ topology_viz.update_prompt(request_id, prompt)
|
|
|
+ prompt_formatted = tokenizer.apply_chat_template(
|
|
|
+ [{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True
|
|
|
+ )
|
|
|
|
|
|
+ try:
|
|
|
+ print(f"Processing prompt: {prompt_formatted}")
|
|
|
+ await node.process_prompt(shard, prompt_formatted, None, request_id=request_id)
|
|
|
+
|
|
|
+ _, tokens, _ = await callback.wait(
|
|
|
+ lambda _request_id, tokens, is_finished: _request_id == request_id and is_finished,
|
|
|
+ timeout=300,
|
|
|
+ )
|
|
|
+
|
|
|
+ print("\nGenerated response:")
|
|
|
+ print(tokenizer.decode(tokens))
|
|
|
+ except Exception as e:
|
|
|
+ print(f"Error processing prompt: {str(e)}")
|
|
|
+ traceback.print_exc()
|
|
|
+ finally:
|
|
|
+ node.on_token.deregister(callback_id)
|
|
|
|
|
|
async def main():
|
|
|
- loop = asyncio.get_running_loop()
|
|
|
+ loop = asyncio.get_running_loop()
|
|
|
+
|
|
|
+ # Handle exit signals
|
|
|
+ def handle_exit():
|
|
|
+ asyncio.ensure_future(shutdown(signal.SIGTERM, loop))
|
|
|
|
|
|
- # Use a more direct approach to handle signals
|
|
|
- def handle_exit():
|
|
|
- asyncio.ensure_future(shutdown(signal.SIGTERM, loop))
|
|
|
+ for s in [signal.SIGINT, signal.SIGTERM]:
|
|
|
+ loop.add_signal_handler(s, handle_exit)
|
|
|
|
|
|
- for s in [signal.SIGINT, signal.SIGTERM]:
|
|
|
- loop.add_signal_handler(s, handle_exit)
|
|
|
+ await node.start(wait_for_peers=args.wait_for_peers)
|
|
|
|
|
|
- await node.start(wait_for_peers=args.wait_for_peers)
|
|
|
+ if args.command == "run" or args.run_model:
|
|
|
+ # Use the provided model name or default to the first model
|
|
|
+ model_name = args.model_name or args.run_model or default_model
|
|
|
|
|
|
- if args.command == "run" or args.run_model:
|
|
|
- model_name = args.model_name or args.run_model
|
|
|
- if not model_name:
|
|
|
- print("Error: Model name is required when using 'run' command or --run-model")
|
|
|
- return
|
|
|
- await run_model_cli(node, inference_engine, model_name, args.prompt)
|
|
|
- else:
|
|
|
- asyncio.create_task(api.run(port=args.chatgpt_api_port)) # Start the API server as a non-blocking task
|
|
|
- await asyncio.Event().wait()
|
|
|
+ # Inform the user about the default selection if no model was specified
|
|
|
+ if not args.model_name and not args.run_model:
|
|
|
+ print(f"No model specified. Defaulting to the first available model: '{default_model}'")
|
|
|
|
|
|
+ await run_model_cli(node, inference_engine, model_name, args.prompt)
|
|
|
+ else:
|
|
|
+ # Start the ChatGPT API server as a non-blocking task
|
|
|
+ asyncio.create_task(api.run(port=args.chatgpt_api_port))
|
|
|
+ await asyncio.Event().wait()
|
|
|
|
|
|
def run():
|
|
|
- loop = asyncio.new_event_loop()
|
|
|
- asyncio.set_event_loop(loop)
|
|
|
- try:
|
|
|
- loop.run_until_complete(main())
|
|
|
- except KeyboardInterrupt:
|
|
|
- print("Received keyboard interrupt. Shutting down...")
|
|
|
- finally:
|
|
|
- loop.run_until_complete(shutdown(signal.SIGTERM, loop))
|
|
|
- loop.close()
|
|
|
+ loop = asyncio.new_event_loop()
|
|
|
+ asyncio.set_event_loop(loop)
|
|
|
+ try:
|
|
|
+ loop.run_until_complete(main())
|
|
|
+ except KeyboardInterrupt:
|
|
|
+ print("Received keyboard interrupt. Shutting down...")
|
|
|
+ finally:
|
|
|
+ loop.run_until_complete(shutdown(signal.SIGTERM, loop))
|
|
|
+ loop.close()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
- run()
|
|
|
+ run()
|