|
@@ -0,0 +1,117 @@
|
|
|
+from dataclasses import dataclass, field
|
|
|
+
|
|
|
+import mlx.core as mx
|
|
|
+import mlx.nn as nn
|
|
|
+
|
|
|
+from mlx_lm.models.base import create_attention_mask
|
|
|
+from mlx_lm.models.phi3 import TransformerBlock, ModelArgs
|
|
|
+
|
|
|
+from ...shard import Shard
|
|
|
+from .base import IdentityBlock
|
|
|
+
|
|
|
+@dataclass
|
|
|
+class ModelArgs(ModelArgs):
|
|
|
+ shard: Shard = field(default_factory=lambda: Shard("", 0, 0, 0))
|
|
|
+
|
|
|
+ def __post_init__(self):
|
|
|
+ super().__post_init__()
|
|
|
+
|
|
|
+ if isinstance(self.shard, Shard):
|
|
|
+ return
|
|
|
+ if not isinstance(self.shard, dict):
|
|
|
+ raise TypeError(f"Expected shard to be a Shard instance or a dict, got {type(self.shard)} instead")
|
|
|
+
|
|
|
+ self.shard = Shard(**self.shard)
|
|
|
+
|
|
|
+class Phi3Model(nn.Module):
|
|
|
+ def __init__(self, args: ModelArgs):
|
|
|
+ super().__init__()
|
|
|
+ self.args = args
|
|
|
+ self.vocab_size = args.vocab_size
|
|
|
+ self.num_hidden_layers = args.num_hidden_layers
|
|
|
+ assert self.vocab_size > 0
|
|
|
+
|
|
|
+ if self.args.shard.is_first_layer():
|
|
|
+ self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
|
+
|
|
|
+ self.layers = []
|
|
|
+ for i in range(self.num_hidden_layers):
|
|
|
+ if self.args.shard.start_layer <= i <= self.args.shard.end_layer:
|
|
|
+ self.layers.append(TransformerBlock(args=args))
|
|
|
+ else:
|
|
|
+ self.layers.append(IdentityBlock())
|
|
|
+
|
|
|
+ if self.args.shard.is_last_layer():
|
|
|
+ self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
|
+
|
|
|
+ def __call__(
|
|
|
+ self,
|
|
|
+ inputs: mx.array,
|
|
|
+ cache=None,
|
|
|
+ ):
|
|
|
+ if self.args.shard.is_first_layer():
|
|
|
+ h = self.embed_tokens(inputs)
|
|
|
+ else:
|
|
|
+ h = inputs
|
|
|
+
|
|
|
+ mask = None
|
|
|
+ if h.shape[1] > 1:
|
|
|
+ mask = create_attention_mask(h, cache)
|
|
|
+
|
|
|
+ if cache is None:
|
|
|
+ cache = [None] * len(self.layers)
|
|
|
+
|
|
|
+ for layer, c in zip(self.layers, cache):
|
|
|
+ h = layer(h, mask, c)
|
|
|
+
|
|
|
+ if self.args.shard.is_last_layer():
|
|
|
+ h = self.norm(h)
|
|
|
+ return h
|
|
|
+
|
|
|
+class Model(nn.Module):
|
|
|
+ def __init__(self, args: ModelArgs):
|
|
|
+ super().__init__()
|
|
|
+ self.args = args
|
|
|
+ self.model_type = args.model_type
|
|
|
+ self.model = Phi3Model(args)
|
|
|
+ if self.args.shard.is_last_layer():
|
|
|
+ self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
|
+
|
|
|
+ def __call__(
|
|
|
+ self,
|
|
|
+ inputs: mx.array,
|
|
|
+ cache=None,
|
|
|
+ ):
|
|
|
+ out = self.model(inputs, cache)
|
|
|
+ if self.args.shard.is_last_layer():
|
|
|
+ out = self.lm_head(out)
|
|
|
+ return out
|
|
|
+
|
|
|
+ def sanitize(self, weights):
|
|
|
+ shard_state_dict = {}
|
|
|
+
|
|
|
+ for key, value in weights.items():
|
|
|
+ if "self_attn.rope.inv_freq" in key:
|
|
|
+ continue
|
|
|
+ if key.startswith('model.layers.'):
|
|
|
+ layer_num = int(key.split('.')[2])
|
|
|
+ if self.args.shard.start_layer <= layer_num <= self.args.shard.end_layer:
|
|
|
+ shard_state_dict[key] = value
|
|
|
+ elif self.args.shard.is_first_layer() and key.startswith('model.embed_tokens'):
|
|
|
+ shard_state_dict[key] = value
|
|
|
+ elif self.args.shard.is_last_layer() and (key.startswith('lm_head') or key.startswith('model.norm')):
|
|
|
+ shard_state_dict[key] = value
|
|
|
+
|
|
|
+ return shard_state_dict
|
|
|
+
|
|
|
+ @property
|
|
|
+ def layers(self):
|
|
|
+ return self.model.layers
|
|
|
+
|
|
|
+ @property
|
|
|
+ def head_dim(self):
|
|
|
+ return self.args.hidden_size // self.args.num_attention_heads
|
|
|
+
|
|
|
+ @property
|
|
|
+ def n_kv_heads(self):
|
|
|
+ return self.args.num_key_value_heads
|