Forráskód Böngészése

always run tinygrad stuff on same thread. tricky because of lazy evaluation

Alex Cheema 8 hónapja
szülő
commit
4ece73423e
1 módosított fájl, 5 hozzáadás és 9 törlés
  1. 5 9
      exo/inference/tinygrad/inference.py

+ 5 - 9
exo/inference/tinygrad/inference.py

@@ -7,7 +7,6 @@ from exo.inference.tokenizers import resolve_tokenizer
 from tinygrad.nn.state import load_state_dict
 from tinygrad import Tensor, nn, Context
 from exo.inference.inference_engine import InferenceEngine
-from typing import Optional, Tuple
 import numpy as np
 from exo.inference.tinygrad.tinygrad_helpers import concat_weights, load
 from exo.download.shard_download import ShardDownloader
@@ -68,24 +67,21 @@ class TinygradDynamicShardInferenceEngine(InferenceEngine):
   async def sample(self, x: np.ndarray, temp=TEMPERATURE, top_p: float = 0.0) -> np.ndarray:
     logits = x[:, -1, :]
     def sample_wrapper():
-      return sample_logits(Tensor(logits).flatten(), temp, 0, 0.8, top_p, 0.0).realize()
-    out = await asyncio.get_running_loop().run_in_executor(self.executor, sample_wrapper)
-    return out.numpy().astype(int)
+      return sample_logits(Tensor(logits).flatten(), temp, 0, 0.8, top_p, 0.0).realize().numpy().astype(int)
+    return await asyncio.get_running_loop().run_in_executor(self.executor, sample_wrapper)
 
   async def encode(self, shard: Shard, prompt: str) -> np.ndarray:
     await self.ensure_shard(shard)
     tokens = await asyncio.get_running_loop().run_in_executor(self.executor, self.tokenizer.encode, prompt)
-    return np.array(tokens)
+    return await asyncio.get_running_loop().run_in_executor(self.executor, np.array, tokens)
   
   async def decode(self, shard: Shard, tokens) -> str:
     await self.ensure_shard(shard)
-    tokens = await asyncio.get_running_loop().run_in_executor(self.executor, self.tokenizer.decode, tokens)
-    return tokens
+    return await asyncio.get_running_loop().run_in_executor(self.executor, self.tokenizer.decode, tokens)
 
   async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray) -> np.ndarray:
     await self.ensure_shard(shard)
-    output_data = await asyncio.get_running_loop().run_in_executor(self.executor, lambda: self.model(Tensor(input_data), request_id).realize())
-    return output_data.numpy()
+    return await asyncio.get_running_loop().run_in_executor(self.executor, lambda: self.model(Tensor(input_data), request_id).realize().numpy())
 
   async def ensure_shard(self, shard: Shard):
     if self.shard == shard: