|
@@ -1,81 +0,0 @@
|
|
|
-# In this example, a user is running a home cluster with 3 shards.
|
|
|
-# They are prompting the cluster to generate a response to a question.
|
|
|
-# The cluster is given the question, and the user is given the response.
|
|
|
-
|
|
|
-from exo.inference.mlx.sharded_utils import get_model_path, load_tokenizer
|
|
|
-from exo.inference.shard import Shard
|
|
|
-from exo.networking.peer_handle import PeerHandle
|
|
|
-from exo.networking.grpc.grpc_peer_handle import GRPCPeerHandle
|
|
|
-from exo.topology.device_capabilities import DeviceCapabilities, DeviceFlops
|
|
|
-from typing import List
|
|
|
-import asyncio
|
|
|
-import argparse
|
|
|
-import uuid
|
|
|
-
|
|
|
-models = {
|
|
|
- "mlx-community/Meta-Llama-3-8B-Instruct-4bit": Shard(model_id="mlx-community/Meta-Llama-3-8B-Instruct-4bit", start_layer=0, end_layer=0, n_layers=32),
|
|
|
- "mlx-community/Meta-Llama-3-70B-Instruct-4bit": Shard(model_id="mlx-community/Meta-Llama-3-70B-Instruct-4bit", start_layer=0, end_layer=0, n_layers=80)
|
|
|
-}
|
|
|
-
|
|
|
-path_or_hf_repo = "mlx-community/Meta-Llama-3-8B-Instruct-4bit"
|
|
|
-model_path = get_model_path(path_or_hf_repo)
|
|
|
-tokenizer_config = {}
|
|
|
-tokenizer = load_tokenizer(model_path, tokenizer_config)
|
|
|
-
|
|
|
-# we intentionally leave out peer1 to demonstrate equality of nodes in exo.
|
|
|
-# there is no "master" node in exo, all nodes are equal and can take on any role.
|
|
|
-# peer1 = GRPCPeerHandle(
|
|
|
-# "node1",
|
|
|
-# "localhost:8080",
|
|
|
-# DeviceCapabilities(model="placeholder", chip="placeholder", memory=0)
|
|
|
-# )
|
|
|
-peer2 = GRPCPeerHandle("node2", "localhost:8081", DeviceCapabilities(model="placeholder", chip="placeholder", memory=0, flops=DeviceFlops(fp32=0, fp16=0, int8=0)))
|
|
|
-shard = models[path_or_hf_repo]
|
|
|
-request_id = str(uuid.uuid4())
|
|
|
-
|
|
|
-
|
|
|
-async def run_prompt(prompt: str):
|
|
|
- if tokenizer.chat_template is None:
|
|
|
- tokenizer.chat_template = tokenizer.default_chat_template
|
|
|
- if (hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None):
|
|
|
- messages = [{"role": "user", "content": prompt}]
|
|
|
- prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
-
|
|
|
- await peer2.connect()
|
|
|
-
|
|
|
- try:
|
|
|
- await peer2.send_prompt(shard, prompt, request_id)
|
|
|
- except Exception as e:
|
|
|
- print(e)
|
|
|
-
|
|
|
- import time
|
|
|
- # poll 10 times per second for result (even though generation is faster, any more than this it's not nice for the user)
|
|
|
- previous_length = 0
|
|
|
- n_tokens = 0
|
|
|
- start_time = time.perf_counter()
|
|
|
- while True:
|
|
|
- try:
|
|
|
- result, is_finished = await peer2.get_inference_result(request_id)
|
|
|
- except Exception as e:
|
|
|
- continue
|
|
|
- await asyncio.sleep(0.1)
|
|
|
-
|
|
|
- # Print the updated string in place
|
|
|
- updated_string = tokenizer.decode(result)
|
|
|
- n_tokens = len(result)
|
|
|
- print(updated_string[previous_length:], end='', flush=True)
|
|
|
- previous_length = len(updated_string)
|
|
|
-
|
|
|
- if is_finished:
|
|
|
- print("\nDone")
|
|
|
- break
|
|
|
- end_time = time.perf_counter()
|
|
|
- print(f"\nDone. Processed {n_tokens} tokens in {end_time - start_time:.2f} seconds ({n_tokens / (end_time - start_time):.2f} tokens/second)")
|
|
|
-
|
|
|
-
|
|
|
-if __name__ == "__main__":
|
|
|
- parser = argparse.ArgumentParser(description="Run prompt")
|
|
|
- parser.add_argument("--prompt", type=str, help="The prompt to run")
|
|
|
- args = parser.parse_args()
|
|
|
-
|
|
|
- asyncio.run(run_prompt(args.prompt))
|