فهرست منبع

Merge pull request #602 from exo-explore/fixexodir

fix exo folder
Alex Cheema 7 ماه پیش
والد
کامیت
c260689a06

+ 5 - 8
exo/helpers.py

@@ -329,19 +329,16 @@ def is_frozen():
 
 
 def get_exo_home() -> Path:
-  if os.name == "nt":  # Check if the OS is Windows
-    docs_folder = Path(os.environ["USERPROFILE"]) / "Documents"
-  else:
-    docs_folder = Path.home() / "Documents"
+  if psutil.WINDOWS: docs_folder = Path(os.environ["USERPROFILE"]) / "Documents"
+  else: docs_folder = Path.home() / "Documents"
+  if not docs_folder.exists(): docs_folder.mkdir(exist_ok=True)
   exo_folder = docs_folder / "Exo"
-  if not exo_folder.exists():
-    exo_folder.mkdir()
+  if not exo_folder.exists(): exo_folder.mkdir(exist_ok=True)
   return exo_folder
 
 def get_exo_images_dir() -> Path:
   exo_home = get_exo_home()
   images_dir = exo_home / "Images"
-  if not images_dir.exists():
-    images_dir.mkdir()
+  if not images_dir.exists(): images_dir.mkdir(exist_ok=True)
   return images_dir
   

+ 5 - 5
exo/inference/debug_inference_engine.py

@@ -16,25 +16,25 @@ async def test_inference_engine(inference_engine_1: InferenceEngine, inference_e
   resp_full = await inference_engine_1.infer_prompt("A", shard=Shard(model_id=model_id, start_layer=0, end_layer=31, n_layers=32), prompt=prompt)
   token_full = await inference_engine_1.sample(resp_full)
 
-  next_resp_full = await inference_engine_1.infer_tensor(
+  next_resp_full, _ = await inference_engine_1.infer_tensor(
     "A",
     shard=Shard(model_id=model_id, start_layer=0, end_layer=31, n_layers=32),
     input_data=token_full,
   )
 
-  resp1 = await inference_engine_1.infer_prompt("B", shard=Shard(model_id=model_id, start_layer=0, end_layer=30, n_layers=32), prompt=prompt)
-  resp2 = await inference_engine_2.infer_tensor(
+  resp1, _ = await inference_engine_1.infer_prompt("B", shard=Shard(model_id=model_id, start_layer=0, end_layer=30, n_layers=32), prompt=prompt)
+  resp2, _ = await inference_engine_2.infer_tensor(
     "B",
     shard=Shard(model_id=model_id, start_layer=31, end_layer=31, n_layers=32),
     input_data=resp1,
   )
   token2 = await inference_engine_2.sample(resp2)
-  resp3 = await inference_engine_1.infer_tensor(
+  resp3, _ = await inference_engine_1.infer_tensor(
     "B",
     shard=Shard(model_id=model_id, start_layer=0, end_layer=30, n_layers=32),
     input_data=token2,
   )
-  resp4 = await inference_engine_2.infer_tensor(
+  resp4, _ = await inference_engine_2.infer_tensor(
     "B",
     shard=Shard(model_id=model_id, start_layer=31, end_layer=31, n_layers=32),
     input_data=resp3,

+ 2 - 2
exo/inference/dummy_inference_engine.py

@@ -25,9 +25,9 @@ class DummyInferenceEngine(InferenceEngine):
   async def decode(self, shard: Shard, tokens: np.ndarray) -> str:
     return self.tokenizer.decode(tokens)
 
-  async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray) -> np.ndarray:
+  async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray, inference_state: Optional[dict] = None) -> tuple[np.ndarray, Optional[dict]]:
     await self.ensure_shard(shard)
-    return input_data + 1 if self.shard.is_last_layer() else input_data
+    return input_data + 1 if self.shard.is_last_layer() else input_data, None
 
   async def ensure_shard(self, shard: Shard):
     if self.shard == shard: return

+ 2 - 2
exo/inference/inference_engine.py

@@ -23,7 +23,7 @@ class InferenceEngine(ABC):
     pass
 
   @abstractmethod
-  async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray) -> np.ndarray:
+  async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray, inference_state: Optional[dict] = None) -> tuple[np.ndarray, Optional[dict]]:
     pass
 
   @abstractmethod
@@ -39,7 +39,7 @@ class InferenceEngine(ABC):
   async def clear_session(self):
     self.session.empty()
   
-  async def infer_prompt(self, request_id: str, shard: Shard, prompt: str, inference_state: Optional[dict] = None) -> np.ndarray:
+  async def infer_prompt(self, request_id: str, shard: Shard, prompt: str, inference_state: Optional[dict] = None) -> tuple[np.ndarray, Optional[dict]]:
     tokens = await self.encode(shard, prompt)
     if shard.model_id != 'stable-diffusion-2-1-base':
       x = tokens.reshape(1, -1)

+ 3 - 3
exo/inference/mlx/sharded_inference_engine.py

@@ -77,15 +77,15 @@ class MLXDynamicShardInferenceEngine(InferenceEngine):
     await self.ensure_shard(shard)
     await asyncio.get_running_loop().run_in_executor(self.executor, self.model.load_weights, path)
     
-  async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray, inference_state: Optional[dict] = None) -> np.ndarray:
+  async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray, inference_state: Optional[dict] = None) -> tuple[np.ndarray, Optional[dict]]:
     await self.ensure_shard(shard)
     loop = asyncio.get_running_loop()
     state = await self.poll_state(request_id) if self.model.model_type != 'StableDiffusionPipeline' else {}
     x = mx.array(input_data)
     if self.model.model_type != 'StableDiffusionPipeline':
-      output_data = await loop.run_in_executor(self.executor, lambda: self.model(x, **state, **inference_state))
+      output_data = await loop.run_in_executor(self.executor, lambda: self.model(x, **state, **(inference_state or {})))
     else:
-      output_data, inference_state = await loop.run_in_executor(self.executor, lambda: self.model(x, **state, **inference_state))
+      output_data, inference_state = await loop.run_in_executor(self.executor, lambda: self.model(x, **state, **(inference_state or {})))
     output_data = np.array(output_data)
     return output_data, inference_state
 

+ 5 - 11
exo/inference/test_dummy_inference_engine.py

@@ -1,22 +1,16 @@
 import pytest
-import json
 import numpy as np
 from exo.inference.dummy_inference_engine import DummyInferenceEngine
 from exo.inference.shard import Shard
 
 
-class MockShardDownloader:
-  async def ensure_shard(self, shard):
-    pass
-
-
 @pytest.mark.asyncio
 async def test_dummy_inference_specific():
-  engine = DummyInferenceEngine(MockShardDownloader())
+  engine = DummyInferenceEngine()
   test_shard = Shard(model_id="test_model", start_layer=0, end_layer=1, n_layers=1)
   test_prompt = "This is a test prompt"
 
-  result = await engine.infer_prompt("test_request", test_shard, test_prompt)
+  result, _ = await engine.infer_prompt("test_request", test_shard, test_prompt)
 
   print(f"Inference result shape: {result.shape}")
 
@@ -26,20 +20,20 @@ async def test_dummy_inference_specific():
 @pytest.mark.asyncio
 async def test_dummy_inference_engine():
   # Initialize the DummyInferenceEngine
-  engine = DummyInferenceEngine(MockShardDownloader())
+  engine = DummyInferenceEngine()
 
   # Create a test shard
   shard = Shard(model_id="test_model", start_layer=0, end_layer=1, n_layers=1)
 
   # Test infer_prompt
-  output = await engine.infer_prompt("test_id", shard, "Test prompt")
+  output, _ = await engine.infer_prompt("test_id", shard, "Test prompt")
 
   assert isinstance(output, np.ndarray), "Output should be a numpy array"
   assert output.ndim == 2, "Output should be 2-dimensional"
 
   # Test infer_tensor
   input_tensor = np.array([[1, 2, 3]])
-  output = await engine.infer_tensor("test_id", shard, input_tensor)
+  output, _ = await engine.infer_tensor("test_id", shard, input_tensor)
 
   assert isinstance(output, np.ndarray), "Output should be a numpy array"
   assert output.ndim == 2, "Output should be 2-dimensional"

+ 6 - 6
exo/inference/test_inference_engine.py

@@ -11,30 +11,30 @@ import numpy as np
 # An inference engine should work the same for any number of Shards, as long as the Shards are continuous.
 async def test_inference_engine(inference_engine_1: InferenceEngine, inference_engine_2: InferenceEngine, model_id: str, n_layers: int):
   prompt = "In a single word only, what is the last name of the current president of the USA?"
-  resp_full = await inference_engine_1.infer_prompt("A", shard=Shard(model_id=model_id, start_layer=0, end_layer=n_layers - 1, n_layers=n_layers), prompt=prompt)
+  resp_full, _ = await inference_engine_1.infer_prompt("A", shard=Shard(model_id=model_id, start_layer=0, end_layer=n_layers - 1, n_layers=n_layers), prompt=prompt)
   token_full = await inference_engine_1.sample(resp_full)
   token_full = token_full.reshape(1, -1)
-  next_resp_full = await inference_engine_1.infer_tensor(
+  next_resp_full, _ = await inference_engine_1.infer_tensor(
     "A",
     shard=Shard(model_id=model_id, start_layer=0, end_layer=n_layers - 1, n_layers=n_layers),
     input_data=token_full,
   )
 
   pp = n_layers // 2
-  resp1 = await inference_engine_1.infer_prompt("B", shard=Shard(model_id=model_id, start_layer=0, end_layer=pp, n_layers=n_layers), prompt=prompt)
-  resp2 = await inference_engine_2.infer_tensor(
+  resp1, _ = await inference_engine_1.infer_prompt("B", shard=Shard(model_id=model_id, start_layer=0, end_layer=pp, n_layers=n_layers), prompt=prompt)
+  resp2, _ = await inference_engine_2.infer_tensor(
     "B",
     shard=Shard(model_id=model_id, start_layer=pp + 1, end_layer=n_layers - 1, n_layers=n_layers),
     input_data=resp1,
   )
   tokens2 = await inference_engine_1.sample(resp2)
   tokens2 = tokens2.reshape(1, -1)
-  resp3 = await inference_engine_1.infer_tensor(
+  resp3, _ = await inference_engine_1.infer_tensor(
     "B",
     shard=Shard(model_id=model_id, start_layer=0, end_layer=pp, n_layers=n_layers),
     input_data=tokens2,
   )
-  resp4 = await inference_engine_2.infer_tensor(
+  resp4, _ = await inference_engine_2.infer_tensor(
     "B",
     shard=Shard(model_id=model_id, start_layer=pp + 1, end_layer=n_layers - 1, n_layers=n_layers),
     input_data=resp3,

+ 1 - 1
exo/inference/tinygrad/inference.py

@@ -104,7 +104,7 @@ class TinygradDynamicShardInferenceEngine(InferenceEngine):
     state_dict = await asyncio.get_running_loop().run_in_executor(self.executor, get_state_dict, self.model)
     safe_save(state_dict, path) 
   
-  async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray, inference_state: Optional[dict] = None) -> np.ndarray:
+  async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray, inference_state: Optional[dict] = None) -> tuple[np.ndarray, Optional[dict]]:
     await self.ensure_shard(shard)
     def wrap_infer():
       x = Tensor(input_data)

+ 2 - 2
exo/networking/grpc/grpc_peer_handle.py

@@ -82,7 +82,7 @@ class GRPCPeerHandle(PeerHandle):
         n_layers=shard.n_layers,
       ),
       request_id=request_id,
-      inference_state=self.serialize_inference_state(inference_state)
+      inference_state=None if inference_state is None else self.serialize_inference_state(inference_state)
     )
     response = await self.stub.SendPrompt(request)
 
@@ -101,7 +101,7 @@ class GRPCPeerHandle(PeerHandle):
       ),
       tensor=node_service_pb2.Tensor(tensor_data=tensor.tobytes(), shape=tensor.shape, dtype=str(tensor.dtype)),
       request_id=request_id,
-      inference_state=self.serialize_inference_state(inference_state)
+      inference_state=None if inference_state is None else self.serialize_inference_state(inference_state)
     )
     response = await self.stub.SendTensor(request)
 

+ 2 - 2
exo/networking/grpc/grpc_server.py

@@ -52,7 +52,7 @@ class GRPCServer(node_service_pb2_grpc.NodeServiceServicer):
     )
     prompt = request.prompt
     request_id = request.request_id
-    inference_state = self.deserialize_inference_state(request.inference_state)
+    inference_state = None if request.inference_state is None else self.deserialize_inference_state(request.inference_state)
     result = await self.node.process_prompt(shard, prompt, request_id, inference_state)
     if DEBUG >= 5: print(f"SendPrompt {shard=} {prompt=} {request_id=} result: {result}")
     tensor_data = result.tobytes() if result is not None else None
@@ -68,7 +68,7 @@ class GRPCServer(node_service_pb2_grpc.NodeServiceServicer):
     tensor = np.frombuffer(request.tensor.tensor_data, dtype=np.dtype(request.tensor.dtype)).reshape(request.tensor.shape)
     request_id = request.request_id
 
-    inference_state = self.deserialize_inference_state(request.inference_state)
+    inference_state = None if request.inference_state is None else self.deserialize_inference_state(request.inference_state)
 
     result = await self.node.process_tensor(shard, tensor, request_id, inference_state)
     if DEBUG >= 5: print(f"SendTensor tensor {shard=} {tensor=} {request_id=} result: {result}")

+ 3 - 3
exo/orchestration/node.py

@@ -206,7 +206,7 @@ class Node:
       return None
     else:
       self.outstanding_requests[request_id] = "processing"
-      result,inference_state = await self.inference_engine.infer_prompt(request_id, shard, prompt, inference_state)
+      result, inference_state = await self.inference_engine.infer_prompt(request_id, shard, prompt, inference_state)
       ret = await self.process_inference_result(shard, result, request_id, inference_state)
       return result
 
@@ -320,7 +320,7 @@ class Node:
           loss, grad = await self.inference_engine.train(request_id, shard, example, target, length)
         else:
           self.outstanding_requests[request_id] = "preprocessing"
-          step = await self.inference_engine.infer_tensor(request_id, shard, example)
+          step, _ = await self.inference_engine.infer_tensor(request_id, shard, example)
           self.outstanding_requests[request_id] = "waiting"
           loss, backgrad = await self.forward_example(shard, step, target, length, train, request_id, self.get_partition_index(offset = 1))
           self.outstanding_requests[request_id] = "training"
@@ -336,7 +336,7 @@ class Node:
           loss = await self.inference_engine.evaluate(request_id, shard, example, target, length)
         else:
           self.outstanding_requests[request_id] = "preprocessing"
-          step = await self.inference_engine.infer_tensor(request_id, shard, example)
+          step, _ = await self.inference_engine.infer_tensor(request_id, shard, example)
           self.outstanding_requests[request_id] = "waiting"
           loss = await self.forward_example(shard, step, target, length, train, request_id, self.get_partition_index(offset = 1))
         self.outstanding_requests.pop(request_id)

+ 1 - 1
test/test_tokenizers.py

@@ -24,7 +24,7 @@ def test_tokenizer(name, tokenizer, verbose=False):
     strip_tokens = lambda s: s.lstrip(tokenizer.decode([tokenizer.bos_token_id])).rstrip(tokenizer.decode([tokenizer.eos_token_id]))
     assert text == strip_tokens(decoded) == strip_tokens(reconstructed)
 
-ignore = ["TriAiExperiments/SFR-Iterative-DPO-LLaMA-3-70B-R", "mlx-community/DeepSeek-Coder-V2-Lite-Instruct-4bit-mlx", "mlx-community/DeepSeek-V2.5-MLX-AQ4_1_64", "llava-hf/llava-1.5-7b-hf", "mlx-community/Qwen*", "dummy", "mlx-community/Meta-Llama-3.1-405B-Instruct-8bit", "mlx-community/Phi-3.5-mini-instruct-4bit", "mlx-community/phi-4-4bit"]
+ignore = ["TriAiExperiments/SFR-Iterative-DPO-LLaMA-3-70B-R", "mlx-community/DeepSeek-Coder-V2-Lite-Instruct-4bit-mlx", "mlx-community/DeepSeek-V2.5-MLX-AQ4_1_64", "llava-hf/llava-1.5-7b-hf", "mlx-community/Qwen*", "dummy", "mlx-community/Meta-Llama-3.1-405B-Instruct-8bit", "mlx-community/Phi-3.5-mini-instruct-4bit", "mlx-community/phi-4-4bit", "stabilityai/stable-diffusion-2-1-base"]
 ignore_pattern = re.compile(r"^(" + "|".join(model.replace("*", ".*") for model in ignore) + r")")
 models = []
 for model_id in model_cards: