123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- import argparse
- import asyncio
- import signal
- import json
- import logging
- import time
- import traceback
- import uuid
- from exo.networking.manual.manual_discovery import ManualDiscovery
- from exo.networking.manual.network_topology_config import NetworkTopology
- from exo.orchestration.node import Node
- from exo.networking.grpc.grpc_server import GRPCServer
- from exo.networking.udp.udp_discovery import UDPDiscovery
- from exo.networking.tailscale.tailscale_discovery import TailscaleDiscovery
- from exo.networking.grpc.grpc_peer_handle import GRPCPeerHandle
- from exo.topology.ring_memory_weighted_partitioning_strategy import RingMemoryWeightedPartitioningStrategy
- from exo.api import ChatGPTAPI
- from exo.download.shard_download import ShardDownloader, RepoProgressEvent, NoopShardDownloader
- from exo.download.hf.hf_shard_download import HFShardDownloader
- from exo.helpers import print_yellow_exo, find_available_port, DEBUG, get_system_info, get_or_create_node_id, get_all_ip_addresses, terminal_link
- from exo.inference.shard import Shard
- from exo.inference.inference_engine import get_inference_engine, InferenceEngine
- from exo.inference.dummy_inference_engine import DummyInferenceEngine
- from exo.inference.tokenizers import resolve_tokenizer
- from exo.orchestration.node import Node
- from exo.models import model_base_shards
- from exo.viz.topology_viz import TopologyViz
- # parse args
- parser = argparse.ArgumentParser(description="Initialize GRPC Discovery")
- parser.add_argument("command", nargs="?", choices=["run"], help="Command to run")
- parser.add_argument("model_name", nargs="?", help="Model name to run")
- parser.add_argument("--node-id", type=str, default=None, help="Node ID")
- parser.add_argument("--node-host", type=str, default="0.0.0.0", help="Node host")
- parser.add_argument("--node-port", type=int, default=None, help="Node port")
- parser.add_argument("--listen-port", type=int, default=5678, help="Listening port for discovery")
- parser.add_argument("--download-quick-check", action="store_true", help="Quick check local path for model shards download")
- parser.add_argument("--max-parallel-downloads", type=int, default=4, help="Max parallel downloads for model shards download")
- parser.add_argument("--prometheus-client-port", type=int, default=None, help="Prometheus client port")
- parser.add_argument("--broadcast-port", type=int, default=5678, help="Broadcast port for discovery")
- parser.add_argument("--discovery-module", type=str, choices=["udp", "tailscale", "manual"], default="udp", help="Discovery module to use")
- parser.add_argument("--discovery-timeout", type=int, default=30, help="Discovery timeout in seconds")
- parser.add_argument("--discovery-config-path", type=str, default=None, help="Path to discovery config json file")
- parser.add_argument("--wait-for-peers", type=int, default=0, help="Number of peers to wait to connect to before starting")
- parser.add_argument("--chatgpt-api-port", type=int, default=8000, help="ChatGPT API port")
- parser.add_argument("--chatgpt-api-response-timeout", type=int, default=90, help="ChatGPT API response timeout in seconds")
- parser.add_argument("--max-generate-tokens", type=int, default=10000, help="Max tokens to generate in each request")
- parser.add_argument("--inference-engine", type=str, default=None, help="Inference engine to use (mlx, tinygrad, or dummy)")
- parser.add_argument("--disable-tui", action=argparse.BooleanOptionalAction, help="Disable TUI")
- parser.add_argument("--run-model", type=str, help="Specify a model to run directly")
- parser.add_argument("--prompt", type=str, help="Prompt for the model when using --run-model", default="Who are you?")
- parser.add_argument("--tailscale-api-key", type=str, default=None, help="Tailscale API key")
- parser.add_argument("--tailnet-name", type=str, default=None, help="Tailnet name")
- args = parser.parse_args()
- print(f"Selected inference engine: {args.inference_engine}")
- print_yellow_exo()
- system_info = get_system_info()
- print(f"Detected system: {system_info}")
- shard_downloader: ShardDownloader = HFShardDownloader(quick_check=args.download_quick_check,
- max_parallel_downloads=args.max_parallel_downloads) if args.inference_engine != "dummy" else NoopShardDownloader()
- inference_engine_name = args.inference_engine or ("mlx" if system_info == "Apple Silicon Mac" else "tinygrad")
- print(f"Inference engine name after selection: {inference_engine_name}")
- inference_engine = get_inference_engine(inference_engine_name, shard_downloader)
- print(f"Using inference engine: {inference_engine.__class__.__name__} with shard downloader: {shard_downloader.__class__.__name__}")
- if args.node_port is None:
- args.node_port = find_available_port(args.node_host)
- if DEBUG >= 1: print(f"Using available port: {args.node_port}")
- args.node_id = args.node_id or get_or_create_node_id()
- chatgpt_api_endpoints = [f"http://{ip}:{args.chatgpt_api_port}/v1/chat/completions" for ip in get_all_ip_addresses()]
- web_chat_urls = [f"http://{ip}:{args.chatgpt_api_port}" for ip in get_all_ip_addresses()]
- if DEBUG >= 0:
- print("Chat interface started:")
- for web_chat_url in web_chat_urls:
- print(f" - {terminal_link(web_chat_url)}")
- print("ChatGPT API endpoint served at:")
- for chatgpt_api_endpoint in chatgpt_api_endpoints:
- print(f" - {terminal_link(chatgpt_api_endpoint)}")
- if args.discovery_module == "udp":
- discovery = UDPDiscovery(
- args.node_id,
- args.node_port,
- args.listen_port,
- args.broadcast_port,
- lambda peer_id, address, device_capabilities: GRPCPeerHandle(peer_id, address, device_capabilities),
- discovery_timeout=args.discovery_timeout
- )
- elif args.discovery_module == "tailscale":
- discovery = TailscaleDiscovery(
- args.node_id,
- args.node_port,
- lambda peer_id, address, device_capabilities: GRPCPeerHandle(peer_id, address, device_capabilities),
- discovery_timeout=args.discovery_timeout,
- tailscale_api_key=args.tailscale_api_key,
- tailnet=args.tailnet_name
- )
- elif args.discovery_module == "manual":
- if not args.discovery_config_path:
- raise ValueError(f"--discovery-config-path is required when using manual discovery. Please provide a path to a config json file.")
- discovery = ManualDiscovery(args.discovery_config_path, args.node_id, create_peer_handle=lambda peer_id, address, device_capabilities: GRPCPeerHandle(peer_id, address, device_capabilities))
- topology_viz = TopologyViz(chatgpt_api_endpoints=chatgpt_api_endpoints, web_chat_urls=web_chat_urls) if not args.disable_tui else None
- node = Node(
- args.node_id,
- None,
- inference_engine,
- discovery,
- partitioning_strategy=RingMemoryWeightedPartitioningStrategy(),
- max_generate_tokens=args.max_generate_tokens,
- topology_viz=topology_viz,
- shard_downloader=shard_downloader
- )
- server = GRPCServer(node, args.node_host, args.node_port)
- node.server = server
- api = ChatGPTAPI(
- node,
- inference_engine.__class__.__name__,
- response_timeout=args.chatgpt_api_response_timeout,
- on_chat_completion_request=lambda req_id, __, prompt: topology_viz.update_prompt(req_id, prompt) if topology_viz else None
- )
- node.on_token.register("update_topology_viz").on_next(
- lambda req_id, tokens, __: topology_viz.update_prompt_output(req_id, inference_engine.tokenizer.decode(tokens)) if topology_viz and hasattr(inference_engine, "tokenizer") else None
- )
- def preemptively_start_download(request_id: str, opaque_status: str):
- try:
- status = json.loads(opaque_status)
- if status.get("type") == "node_status" and status.get("status") == "start_process_prompt":
- current_shard = node.get_current_shard(Shard.from_dict(status.get("shard")))
- if DEBUG >= 2: print(f"Preemptively starting download for {current_shard}")
- asyncio.create_task(shard_downloader.ensure_shard(current_shard))
- except Exception as e:
- if DEBUG >= 2:
- print(f"Failed to preemptively start download: {e}")
- traceback.print_exc()
- node.on_opaque_status.register("start_download").on_next(preemptively_start_download)
- if args.prometheus_client_port:
- from exo.stats.metrics import start_metrics_server
- start_metrics_server(node, args.prometheus_client_port)
- last_broadcast_time = 0
- def throttled_broadcast(shard: Shard, event: RepoProgressEvent):
- global last_broadcast_time
- current_time = time.time()
- if event.status == "complete" or current_time - last_broadcast_time >= 0.1:
- last_broadcast_time = current_time
- asyncio.create_task(node.broadcast_opaque_status("", json.dumps({"type": "download_progress", "node_id": node.id, "progress": event.to_dict()})))
- shard_downloader.on_progress.register("broadcast").on_next(throttled_broadcast)
- async def shutdown(signal, loop):
- """Gracefully shutdown the server and close the asyncio loop."""
- print(f"Received exit signal {signal.name}...")
- print("Thank you for using exo.")
- print_yellow_exo()
- server_tasks = [t for t in asyncio.all_tasks() if t is not asyncio.current_task()]
- [task.cancel() for task in server_tasks]
- print(f"Cancelling {len(server_tasks)} outstanding tasks")
- await asyncio.gather(*server_tasks, return_exceptions=True)
- await server.stop()
- loop.stop()
- async def run_model_cli(node: Node, inference_engine: InferenceEngine, model_name: str, prompt: str):
- shard = model_base_shards.get(model_name, {}).get(inference_engine.__class__.__name__)
- if not shard:
- print(f"Error: Unsupported model '{model_name}' for inference engine {inference_engine.__class__.__name__}")
- return
- tokenizer = await resolve_tokenizer(shard.model_id)
- request_id = str(uuid.uuid4())
- callback_id = f"cli-wait-response-{request_id}"
- callback = node.on_token.register(callback_id)
- if topology_viz:
- topology_viz.update_prompt(request_id, prompt)
- prompt = tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True)
- try:
- print(f"Processing prompt: {prompt}")
- await node.process_prompt(shard, prompt, None, request_id=request_id)
- _, tokens, _ = await callback.wait(lambda _request_id, tokens, is_finished: _request_id == request_id and is_finished, timeout=300)
- print("\nGenerated response:")
- print(tokenizer.decode(tokens))
- except Exception as e:
- print(f"Error processing prompt: {str(e)}")
- traceback.print_exc()
- finally:
- node.on_token.deregister(callback_id)
- async def main():
- loop = asyncio.get_running_loop()
- # Use a more direct approach to handle signals
- def handle_exit():
- asyncio.ensure_future(shutdown(signal.SIGTERM, loop))
- for s in [signal.SIGINT, signal.SIGTERM]:
- loop.add_signal_handler(s, handle_exit)
- await node.start(wait_for_peers=args.wait_for_peers)
- if args.command == "run" or args.run_model:
- model_name = args.model_name or args.run_model
- if not model_name:
- print("Error: Model name is required when using 'run' command or --run-model")
- return
- await run_model_cli(node, inference_engine, model_name, args.prompt)
- else:
- asyncio.create_task(api.run(port=args.chatgpt_api_port)) # Start the API server as a non-blocking task
- await asyncio.Event().wait()
- def run():
- loop = asyncio.new_event_loop()
- asyncio.set_event_loop(loop)
- try:
- loop.run_until_complete(main())
- except KeyboardInterrupt:
- print("Received keyboard interrupt. Shutting down...")
- finally:
- loop.run_until_complete(shutdown(signal.SIGTERM, loop))
- loop.close()
- if __name__ == "__main__":
- run()
|