standard_node.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478
  1. import numpy as np
  2. import json
  3. import asyncio
  4. import uuid
  5. import time
  6. import traceback
  7. from typing import List, Dict, Optional, Tuple, Union, Set
  8. from exo.networking import Discovery, PeerHandle, Server
  9. from exo.inference.inference_engine import InferenceEngine, Shard
  10. from .node import Node
  11. from exo.topology.topology import Topology
  12. from exo.topology.device_capabilities import device_capabilities
  13. from exo.topology.partitioning_strategy import Partition, PartitioningStrategy, map_partitions_to_shards
  14. from exo import DEBUG
  15. from exo.helpers import AsyncCallbackSystem
  16. from exo.viz.topology_viz import TopologyViz
  17. from exo.download.hf.hf_helpers import RepoProgressEvent
  18. from exo.inference.inference_engine import get_inference_engine, InferenceEngine
  19. from exo.download.hf.hf_shard_download import HFShardDownloader
  20. class StandardNode(Node):
  21. def __init__(
  22. self,
  23. _id: str,
  24. server: Server,
  25. inference_engine: InferenceEngine,
  26. discovery: Discovery,
  27. partitioning_strategy: PartitioningStrategy = None,
  28. max_generate_tokens: int = 1024,
  29. topology_viz: Optional[TopologyViz] = None,
  30. shard_downloader: Optional[HFShardDownloader] = None,
  31. ):
  32. self.id = _id
  33. self.inference_engine = inference_engine
  34. self.server = server
  35. self.discovery = discovery
  36. self.partitioning_strategy = partitioning_strategy
  37. self.peers: List[PeerHandle] = {}
  38. self.topology: Topology = Topology()
  39. self.device_capabilities = device_capabilities()
  40. self.buffered_token_output: Dict[str, Tuple[List[int], bool]] = {}
  41. self.buffered_logits: Dict[str, List[np.ndarray]] = {}
  42. self.buffered_inputs: Dict[str, List[np.ndarray]] = {}
  43. self.max_generate_tokens = max_generate_tokens
  44. self.topology_viz = topology_viz
  45. self._on_token = AsyncCallbackSystem[str, Tuple[str, List[int], bool]]()
  46. self._on_opaque_status = AsyncCallbackSystem[str, Tuple[str, str]]()
  47. self._on_opaque_status.register("node_status").on_next(self.on_node_status)
  48. self.node_download_progress: Dict[str, RepoProgressEvent] = {}
  49. self.topology_inference_engines_pool: List[List[str]] = []
  50. self.shard_downloader = shard_downloader
  51. async def start(self, wait_for_peers: int = 0) -> None:
  52. await self.server.start()
  53. await self.discovery.start()
  54. await self.update_peers(wait_for_peers)
  55. await self.collect_topology()
  56. if DEBUG >= 2: print(f"Collected topology: {self.topology}")
  57. asyncio.create_task(self.periodic_topology_collection(1.0))
  58. async def stop(self) -> None:
  59. await self.discovery.stop()
  60. await self.server.stop()
  61. def on_node_status(self, request_id, opaque_status):
  62. try:
  63. status_data = json.loads(opaque_status)
  64. if status_data.get("type", "") == "supported_inference_engines":
  65. node_id = status_data.get("node_id")
  66. engines = status_data.get("engines", [])
  67. self.topology_inference_engines_pool.append(engines)
  68. if status_data.get("type", "") == "node_status":
  69. if status_data.get("status", "").startswith("start_"):
  70. self.current_topology.active_node_id = status_data.get("node_id")
  71. elif status_data.get("status", "").startswith("end_"):
  72. if status_data.get("node_id") == self.current_topology.active_node_id:
  73. self.current_topology.active_node_id = None
  74. download_progress = None
  75. if status_data.get("type", "") == "download_progress":
  76. if DEBUG >= 8: print(f"Download progress from {status_data.get('node_id')}: {status_data.get('progress')}")
  77. download_progress = RepoProgressEvent.from_dict(status_data.get('progress'))
  78. self.node_download_progress[status_data.get('node_id')] = download_progress
  79. if self.topology_viz:
  80. self.topology_viz.update_visualization(self.current_topology, self.partitioning_strategy.partition(self.current_topology), self.id, self.node_download_progress)
  81. except Exception as e:
  82. if DEBUG >= 1: print(f"Error updating visualization: {e}")
  83. if DEBUG >= 1: traceback.print_exc()
  84. def get_supported_inference_engines(self):
  85. supported_engine_names = []
  86. if self.inference_engine.__class__.__name__ == 'MLXDynamicShardInferenceEngine':
  87. supported_engine_names.append('mlx')
  88. supported_engine_names.append('tinygrad')
  89. else:
  90. supported_engine_names.append('tinygrad')
  91. return supported_engine_names
  92. async def broadcast_supported_engines(self, supported_engines_names: List[str]):
  93. status_message = json.dumps({"type": "supported_inference_engines", "node_id": self.id, "engines": supported_engines_names})
  94. await self.broadcast_opaque_status("", status_message)
  95. def get_topology_inference_engines(self) -> List[List[str]]:
  96. return self.topology_inference_engines_pool
  97. async def encode_prompt(self, shard: Shard, prompt):
  98. toks = await self.inference_engine.encode(shard, prompt)
  99. return toks
  100. async def process_result(
  101. self,
  102. shard,
  103. result: np.ndarray,
  104. request_id: Optional[str] = None,
  105. inference_state: Optional[str] = None,
  106. ):
  107. if request_id not in self.buffered_token_output:
  108. self.buffered_token_output[request_id] = ([], False)
  109. if request_id not in self.buffered_logits:
  110. self.buffered_logits[request_id] = []
  111. self.buffered_logits[request_id] += [i for i in np.reshape(result, (-1, 1, result.shape[-1]))]
  112. if shard.is_last_layer():
  113. result = await self.inference_engine.sample(result)
  114. inference_state = json.dumps({"start_pos": len(self.buffered_logits[request_id]) + 1})
  115. await self.inference_engine.ensure_shard(shard)
  116. is_finished = result.size == 1 and result.item() == self.inference_engine.tokenizer.eos_token_id or len(self.buffered_token_output[request_id][0]) >= self.max_generate_tokens
  117. asyncio.create_task(self.broadcast_result(request_id, self.buffered_token_output[request_id][0], is_finished)) # TODO: this is n^2 communication complexity
  118. if result.size == 1: # we got a new token out
  119. self.buffered_token_output[request_id][0].append(result.item())
  120. self.trigger_on_token_callbacks(request_id, self.buffered_token_output[request_id][0], is_finished)
  121. if DEBUG >= 2: print(f"[{request_id}] result size: {result.size}, is finished: {is_finished}, buffered tokens: {len(self.buffered_token_output[request_id][0])}")
  122. if is_finished:
  123. self.buffered_token_output[request_id] = (self.buffered_token_output[request_id][0], True)
  124. else:
  125. asyncio.create_task(self.forward_to_next_shard(shard, result, request_id, inference_state=inference_state))
  126. return np.array(self.buffered_token_output[request_id][0]) if len(self.buffered_token_output[request_id][0]) > 0 else None
  127. async def process_prompt(
  128. self,
  129. base_shard: Shard,
  130. prompt: str,
  131. request_id: Optional[str] = None,
  132. inference_state: Optional[str] = None
  133. ) -> Optional[np.ndarray]:
  134. shard = self.get_current_shard(base_shard)
  135. asyncio.create_task(
  136. self.broadcast_opaque_status(
  137. request_id,
  138. json.dumps({
  139. "type": "node_status",
  140. "node_id": self.id,
  141. "status": "start_process_prompt",
  142. "base_shard": base_shard.to_dict(),
  143. "shard": shard.to_dict(),
  144. "prompt": prompt,
  145. "inference_state": inference_state,
  146. "request_id": request_id,
  147. }),
  148. )
  149. )
  150. start_time = time.perf_counter_ns()
  151. resp = await self._process_prompt(base_shard, prompt, request_id, inference_state)
  152. end_time = time.perf_counter_ns()
  153. elapsed_time_ns = end_time - start_time
  154. asyncio.create_task(
  155. self.broadcast_opaque_status(
  156. request_id,
  157. json.dumps({
  158. "type": "node_status",
  159. "node_id": self.id,
  160. "status": "end_process_prompt",
  161. "base_shard": base_shard.to_dict(),
  162. "shard": shard.to_dict(),
  163. "prompt": prompt,
  164. "inference_state": inference_state,
  165. "request_id": request_id,
  166. "elapsed_time_ns": elapsed_time_ns,
  167. "result_size": resp.size if resp is not None else 0,
  168. }),
  169. )
  170. )
  171. return resp
  172. async def _process_prompt(self, base_shard: Shard, prompt: str, request_id: Optional[str] = None, inference_state: Optional[str] = None) -> Optional[np.ndarray]:
  173. if request_id is None:
  174. request_id = str(uuid.uuid4())
  175. shard = self.get_current_shard(base_shard)
  176. if DEBUG >= 2: print(f"[{request_id}] process prompt: {base_shard=} {shard=} {prompt=}")
  177. if shard.start_layer != 0:
  178. if DEBUG >= 2: print(f"[{request_id}] forwarding to next shard: {base_shard=} {shard=} {prompt=}")
  179. await self.forward_to_next_shard(shard, prompt, request_id, inference_state=inference_state)
  180. return None
  181. else:
  182. result = await self.inference_engine.infer_prompt(request_id, shard, prompt, inference_state=inference_state)
  183. ret = await self.process_result(shard, result, request_id, inference_state=inference_state)
  184. return result
  185. async def process_tensor(
  186. self,
  187. base_shard: Shard,
  188. tensor: np.ndarray,
  189. request_id: Optional[str] = None,
  190. inference_state: Optional[str] = None,
  191. ) -> Optional[np.ndarray]:
  192. shard = self.get_current_shard(base_shard)
  193. asyncio.create_task(
  194. self.broadcast_opaque_status(
  195. request_id,
  196. json.dumps({
  197. "type": "node_status",
  198. "node_id": self.id,
  199. "status": "start_process_tensor",
  200. "base_shard": base_shard.to_dict(),
  201. "shard": shard.to_dict(),
  202. "tensor_size": tensor.size,
  203. "tensor_shape": tensor.shape,
  204. "request_id": request_id,
  205. "inference_state": inference_state,
  206. }),
  207. )
  208. )
  209. start_time = time.perf_counter_ns()
  210. resp = await self._process_tensor(shard, tensor, request_id, inference_state)
  211. end_time = time.perf_counter_ns()
  212. elapsed_time_ns = end_time - start_time
  213. asyncio.create_task(
  214. self.broadcast_opaque_status(
  215. request_id,
  216. json.dumps({
  217. "type": "node_status",
  218. "node_id": self.id,
  219. "status": "end_process_tensor",
  220. "base_shard": base_shard.to_dict(),
  221. "shard": shard.to_dict(),
  222. "request_id": request_id,
  223. "elapsed_time_ns": elapsed_time_ns,
  224. "result_size": resp.size if resp is not None else 0,
  225. }),
  226. )
  227. )
  228. return resp
  229. async def _process_tensor(
  230. self,
  231. base_shard: Shard,
  232. tensor: np.ndarray,
  233. request_id: Optional[str] = None,
  234. inference_state: Optional[str] = None,
  235. ) -> Optional[np.ndarray]:
  236. if request_id is None:
  237. request_id = str(uuid.uuid4())
  238. shard = self.get_current_shard(base_shard)
  239. if DEBUG >= 1: print(f"[{request_id}] process_tensor: {tensor.size=} {tensor.shape=}")
  240. try:
  241. result = await self.inference_engine.infer_tensor(request_id, shard, tensor, inference_state=inference_state)
  242. ret = await self.process_result(shard, result, request_id, inference_state=inference_state)
  243. return ret
  244. except Exception as e:
  245. print(f"Error processing tensor for shard {shard}: {e}")
  246. traceback.print_exc()
  247. return None
  248. async def forward_to_next_shard(
  249. self,
  250. base_shard: Shard,
  251. tensor_or_prompt: Union[np.ndarray, str],
  252. request_id: str,
  253. inference_state: Optional[str] = None,
  254. ) -> None:
  255. if not self.partitioning_strategy:
  256. if DEBUG >= 1: print("No partitioning strategy found. Skipping forward.")
  257. return
  258. next_partition_index = self.get_partition_index(offset = 1)
  259. if DEBUG >= 1: print(f"Next partition index: {next_partition_index}")
  260. if next_partition_index is not None:
  261. target_id = self.partitioning_strategy.partition(self.topology)[next_partition_index].node_id
  262. next_shard = self.get_current_shard(base_shard, next_partition_index)
  263. if DEBUG >= 2: print(f"Computed next from: {shard}, {self.topology}. Next partition: {next_partition}")
  264. is_tensor = isinstance(tensor_or_prompt, np.ndarray)
  265. if target_id == self.id:
  266. if is_tensor:
  267. await self.process_tensor(next_shard, tensor_or_prompt, request_id, inference_state=inference_state)
  268. else:
  269. await self.process_prompt(next_shard, tensor_or_prompt, request_id, inference_state=inference_state)
  270. else:
  271. target_peer = next((p for p in self.peers if p.id() == target_id), None)
  272. if not target_peer:
  273. raise ValueError(f"Peer for {next_partition} not found")
  274. if is_tensor:
  275. if DEBUG >= 1: print(f"Sending tensor to {target_peer.id()}: {tensor_or_prompt}")
  276. await target_peer.send_tensor(next_shard, tensor_or_prompt, request_id=request_id, inference_state=inference_state)
  277. else:
  278. await target_peer.send_prompt(next_shard, tensor_or_prompt, request_id=request_id, inference_state=inference_state)
  279. def get_partition_index(self, offset: int = 0):
  280. partitions = self.partitioning_strategy.partition(self.topology)
  281. current_partition_index = next((i for i, p in enumerate(partitions) if p.node_id == self.id), None)
  282. if current_partition_index is None:
  283. raise ValueError(f"No current partition found for node: {self.id}")
  284. return (current_partition_index + offset) % len(partitions)
  285. def get_current_shard(self, base_shard: Shard, index: Optional[int] = None) -> Shard:
  286. if index is None:
  287. index = self.get_partition_index()
  288. partitions = self.partitioning_strategy.partition(self.topology)
  289. shards = map_partitions_to_shards(partitions, base_shard.n_layers, base_shard.model_id)
  290. return shards[index]
  291. async def update_peers(self, wait_for_peers: int = 0) -> bool:
  292. next_peers = await self.discovery.discover_peers(wait_for_peers)
  293. current_peer_ids = {peer.id() for peer in self.peers}
  294. next_peer_ids = {peer.id() for peer in next_peers}
  295. peers_added = [peer for peer in next_peers if peer.id() not in current_peer_ids]
  296. peers_removed = [peer for peer in self.peers if peer.id() not in next_peer_ids]
  297. peers_updated = [peer for peer in next_peers if peer.id() in current_peer_ids and any(p.addr() != peer.addr() for p in self.peers if p.id() == peer.id())]
  298. peers_unchanged = [peer for peer in next_peers if peer.id() in current_peer_ids and all(p.addr() == peer.addr() for p in self.peers if p.id() == peer.id())]
  299. peers_to_disconnect = [peer for peer in peers_removed if await peer.is_connected()]
  300. peers_to_connect = [peer for peer in peers_added + peers_updated + peers_unchanged if not await peer.is_connected()]
  301. def _pretty(peers: List[PeerHandle]) -> List[str]:
  302. return [f"{peer.id()}@{peer.addr()}" for peer in peers]
  303. if DEBUG >= 2:
  304. print(f"update_peers: added={peers_added} removed={peers_removed} updated={peers_updated} unchanged={peers_unchanged} to_disconnect={peers_to_disconnect} to_connect={peers_to_connect}")
  305. async def disconnect_with_timeout(peer, timeout=5):
  306. try:
  307. await asyncio.wait_for(peer.disconnect(), timeout)
  308. return True
  309. except Exception as e:
  310. print(f"Error disconnecting peer {peer.id()}@{peer.addr()}: {e}")
  311. traceback.print_exc()
  312. return False
  313. async def connect_with_timeout(peer, timeout=5):
  314. try:
  315. await asyncio.wait_for(peer.connect(), timeout)
  316. return True
  317. except Exception as e:
  318. print(f"Error connecting peer {peer.id()}@{peer.addr()}: {e}")
  319. traceback.print_exc()
  320. return False
  321. disconnect_results = await asyncio.gather(*(disconnect_with_timeout(peer) for peer in peers_to_disconnect), return_exceptions=True)
  322. connect_results = await asyncio.gather(*(connect_with_timeout(peer) for peer in peers_to_connect), return_exceptions=True)
  323. successful_disconnects = [peer for peer, result in zip(peers_to_disconnect, disconnect_results) if result is True]
  324. failed_disconnects = [peer for peer, result in zip(peers_to_disconnect, disconnect_results) if result is False]
  325. successful_connects = [peer for peer, result in zip(peers_to_connect, connect_results) if result is True]
  326. failed_connects = [peer for peer, result in zip(peers_to_connect, connect_results) if result is False]
  327. if DEBUG >= 1:
  328. if successful_disconnects: print(f"Successfully disconnected peers: {_pretty(successful_disconnects)}")
  329. if failed_disconnects: print(f"Failed to disconnect peers: {_pretty(failed_disconnects)}")
  330. if successful_connects: print(f"Successfully connected peers: {_pretty(successful_connects)}")
  331. if failed_connects: print(f"Failed to connect peers: {_pretty(failed_connects)}")
  332. self.peers = next_peers
  333. return len(peers_added) > 0 or len(peers_removed) > 0 or len(peers_updated) > 0
  334. async def select_best_inference_engine(self):
  335. supported_engines = self.get_supported_inference_engines()
  336. await self.broadcast_supported_engines(supported_engines)
  337. if len(self.get_topology_inference_engines()):
  338. if any(len(engines) == 1 and "tinygrad" in engines for engines in self.get_topology_inference_engines()):
  339. if DEBUG >= 1: print("Found node with only tinygrad, using tinygrad on all nodes")
  340. self.inference_engine = get_inference_engine("tinygrad", self.shard_downloader)
  341. else:
  342. if DEBUG >= 1: print("All nodes can use mlx, using mlx for inference")
  343. self.inference_engine = get_inference_engine("mlx", self.shard_downloader)
  344. async def periodic_topology_collection(self, interval: int):
  345. while True:
  346. await asyncio.sleep(interval)
  347. try:
  348. did_peers_change = await self.update_peers()
  349. if DEBUG >= 2: print(f"{did_peers_change=}")
  350. if did_peers_change:
  351. await self.collect_topology()
  352. await self.select_best_inference_engine()
  353. except Exception as e:
  354. print(f"Error collecting topology: {e}")
  355. traceback.print_exc()
  356. async def get_inference_result(self, request_id: str) -> Tuple[Optional[np.ndarray], bool]:
  357. if request_id not in self.buffered_token_output:
  358. return None, False
  359. return np.array(self.buffered_token_output[request_id][0]), self.buffered_token_output[request_id][1]
  360. async def collect_topology(self, visited: set[str] = set(), max_depth: int = 4) -> Topology:
  361. next_topology = Topology()
  362. next_topology.update_node(self.id, self.device_capabilities)
  363. if DEBUG >= 2: print(f"Collecting topology {max_depth=} {visited=}")
  364. prev_visited = visited.copy()
  365. visited.add(self.id)
  366. visited.update(p.id() for p in self.peers)
  367. for peer in self.peers:
  368. next_topology.update_node(peer.id(), peer.device_capabilities())
  369. next_topology.add_edge(self.id, peer.id())
  370. if peer.id() in prev_visited:
  371. continue
  372. if max_depth <= 0:
  373. if DEBUG >= 2: print("Max depth reached. Skipping...")
  374. continue
  375. try:
  376. other_topology = await asyncio.wait_for(peer.collect_topology(visited, max_depth=max_depth - 1), timeout=5.0)
  377. if DEBUG >= 2: print(f"Collected topology from: {peer.id()}: {other_topology}")
  378. self.topology.merge(other_topology)
  379. except Exception as e:
  380. print(f"Error collecting topology from {peer.id()}: {e}")
  381. traceback.print_exc()
  382. next_topology.active_node_id = self.topology.active_node_id # this is not so clean.
  383. self.topology = next_topology
  384. if self.topology_viz:
  385. self.topology_viz.update_visualization(self.current_topology, self.partitioning_strategy.partition(self.current_topology), self.id)
  386. return next_topology
  387. @property
  388. def on_token(self) -> AsyncCallbackSystem[str, Tuple[str, List[int], bool]]:
  389. return self._on_token
  390. @property
  391. def on_opaque_status(self) -> AsyncCallbackSystem[str, Tuple[str, str]]:
  392. return self._on_opaque_status
  393. def trigger_on_token_callbacks(self, request_id: str, tokens: List[int], is_finished: bool) -> None:
  394. if DEBUG >= 2: print(f"Triggering all on_token callbacks with {request_id=} num_tokens={len(tokens)} {is_finished=}")
  395. self.on_token.trigger_all(request_id, tokens, is_finished)
  396. async def broadcast_result(self, request_id: str, result: List[int], is_finished: bool) -> None:
  397. async def send_result_to_peer(peer):
  398. try:
  399. await asyncio.wait_for(peer.send_result(request_id, result, is_finished), timeout=15.0)
  400. except asyncio.TimeoutError:
  401. print(f"Timeout broadcasting result to {peer.id()}")
  402. except Exception as e:
  403. print(f"Error broadcasting result to {peer.id()}: {e}")
  404. traceback.print_exc()
  405. await asyncio.gather(*[send_result_to_peer(peer) for peer in self.peers], return_exceptions=True)
  406. async def broadcast_opaque_status(self, request_id: str, status: str) -> None:
  407. if DEBUG >= 8: print(f"Broadcasting opaque status: {request_id=} {status=}")
  408. async def send_status_to_peer(peer):
  409. try:
  410. await asyncio.wait_for(peer.send_opaque_status(request_id, status), timeout=15.0)
  411. except asyncio.TimeoutError:
  412. print(f"Timeout sending opaque status to {peer.id()}")
  413. except Exception as e:
  414. print(f"Error sending opaque status to {peer.id()}: {e}")
  415. traceback.print_exc()
  416. await asyncio.gather(*[send_status_to_peer(peer) for peer in self.peers], return_exceptions=True)
  417. # in the case of opaque status, we also want to receive our own opaque statuses
  418. self.on_opaque_status.trigger_all(request_id, status)
  419. @property
  420. def current_topology(self) -> Topology:
  421. return self.topology