llama.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212
  1. from typing import Tuple, Union, Optional, Dict, Any
  2. from tinygrad import Tensor, Variable, TinyJit, dtypes, nn, Device
  3. from tinygrad.helpers import getenv
  4. # https://github.com/facebookresearch/llama/blob/1076b9c51c77ad06e9d7ba8a4c6df775741732bd/llama/model.py#L47
  5. def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, dtype=dtypes.half) -> Tensor:
  6. freqs = 1.0 / (theta ** (Tensor.arange(0, dim, 2)[:(dim // 2)] / dim))
  7. freqs = Tensor.arange(end).unsqueeze(dim=1) * freqs.unsqueeze(dim=0)
  8. # TODO: move dtype outside this
  9. return Tensor.stack(freqs.cos().cast(dtype), freqs.sin().cast(dtype), dim=-1).reshape(1, end, 1, dim//2, 2)
  10. # (a+i*b) * (c+i*d) = (ac-bd) + i*(ad+bc)
  11. def complex_mult(A, c, d):
  12. a,b = A[..., 0:1], A[..., 1:2]
  13. ro = a*c - b*d
  14. co = a*d + b*c
  15. return ro.cat(co, dim=-1)
  16. def apply_rotary_emb(xq:Tensor, xk:Tensor, freqs_cis:Tensor) -> Tuple[Tensor, Tensor]:
  17. assert freqs_cis.shape[1] == xq.shape[1] == xk.shape[1], f"freqs_cis shape mismatch {freqs_cis.shape} xq:{xq.shape} xk:{xk.shape}"
  18. xq = xq.reshape(*xq.shape[0:-1], -1, 2)
  19. xk = xk.reshape(*xk.shape[0:-1], -1, 2)
  20. assert len(xq.shape) == len(xk.shape) == len(freqs_cis.shape) == 5
  21. c, d = freqs_cis[..., 0:1], freqs_cis[..., 1:2]
  22. xq_out = complex_mult(xq, c, d)
  23. xk_out = complex_mult(xk, c, d)
  24. return xq_out.flatten(3), xk_out.flatten(3)
  25. def repeat_kv(x:Tensor, n_rep:int) -> Tensor:
  26. bs, seqlen, n_kv_heads, head_dim = x.shape
  27. if n_rep == 1: return x
  28. # NOTE: this is different from x.repeat((1, 1, n_rep, 1))
  29. return x.repeat((1, 1, 1, n_rep)).reshape(bs, seqlen, n_kv_heads * n_rep, head_dim)
  30. class Attention:
  31. def __init__(self, dim, n_heads, n_kv_heads, max_context, linear=nn.Linear):
  32. self.n_heads = n_heads
  33. self.n_kv_heads = n_kv_heads if n_kv_heads is not None else n_heads # n_kv_heads != n_heads implies MQA [arxiv/2307.09288, A.2.1]
  34. self.head_dim = dim // n_heads
  35. self.n_rep = self.n_heads // self.n_kv_heads
  36. self.max_context = max_context
  37. self.wq = linear(dim, self.n_heads * self.head_dim, bias=False)
  38. self.wk = linear(dim, self.n_kv_heads * self.head_dim, bias=False)
  39. self.wv = linear(dim, self.n_kv_heads * self.head_dim, bias=False)
  40. self.wo = linear(self.n_heads * self.head_dim, dim, bias=False)
  41. def __call__(self, x:Tensor, start_pos:Union[Variable,int], freqs_cis:Tensor, mask:Optional[Tensor]) -> Tensor:
  42. xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
  43. xq = xq.reshape(xq.shape[0], xq.shape[1], self.n_heads, self.head_dim)
  44. xk = xk.reshape(xk.shape[0], xk.shape[1], self.n_kv_heads, self.head_dim)
  45. xv = xv.reshape(xv.shape[0], xv.shape[1], self.n_kv_heads, self.head_dim)
  46. xq, xk = apply_rotary_emb(xq, xk, freqs_cis)
  47. bsz, seqlen, _, _ = xq.shape
  48. # create kv cache
  49. if not hasattr(self, "cache_kv"):
  50. self.cache_kv = Tensor.zeros(2, bsz, self.max_context, self.n_kv_heads, self.head_dim, dtype=x.dtype).contiguous().realize()
  51. if isinstance(x.device, tuple):
  52. # TODO: instead of specifying how to shard, it can follow how xk and xv are being sharded
  53. self.cache_kv.shard_((x.device), axis=None).realize()
  54. # update the cache
  55. assert xk.dtype == xv.dtype == self.cache_kv.dtype, f"{xk.dtype=}, {xv.dtype=}, {self.cache_kv.dtype=}"
  56. self.cache_kv.shrink((None, None, (start_pos, start_pos+seqlen), None, None)).assign(Tensor.stack(xk, xv)).realize()
  57. keys = self.cache_kv[0].shrink((None, (0, start_pos+seqlen), None, None)) if start_pos > 0 else xk
  58. values = self.cache_kv[1].shrink((None, (0, start_pos+seqlen), None, None)) if start_pos > 0 else xv
  59. keys, values = repeat_kv(keys, self.n_rep), repeat_kv(values, self.n_rep)
  60. xq, keys, values = xq.transpose(1, 2), keys.transpose(1, 2), values.transpose(1, 2)
  61. attn = xq.scaled_dot_product_attention(keys, values, mask).transpose(1, 2)
  62. attn = attn.reshape(bsz, seqlen, -1)
  63. return self.wo(attn)
  64. class FeedForward:
  65. def __init__(self, dim:int, hidden_dim:int, linear=nn.Linear):
  66. self.w1 = linear(dim, hidden_dim, bias=False)
  67. self.w2 = linear(hidden_dim, dim, bias=False)
  68. self.w3 = linear(dim, hidden_dim, bias=False) # the gate in Gated Linear Unit
  69. def __call__(self, x:Tensor) -> Tensor:
  70. return self.w2(self.w1(x).silu() * self.w3(x)) # SwiGLU [arxiv/2002.05202, eq (5)]
  71. class TransformerBlock:
  72. def __init__(self, dim:int, hidden_dim:int, n_heads:int, n_kv_heads:int, norm_eps:float, max_context:int, linear=nn.Linear, feed_forward=FeedForward):
  73. self.attention = Attention(dim, n_heads, n_kv_heads, max_context, linear)
  74. self.feed_forward = feed_forward(dim, hidden_dim, linear)
  75. self.attention_norm = nn.RMSNorm(dim, norm_eps)
  76. self.ffn_norm = nn.RMSNorm(dim, norm_eps)
  77. def __call__(self, x:Tensor, start_pos:Union[Variable,int], freqs_cis:Tensor, mask:Optional[Tensor]):
  78. h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask)
  79. return (h + self.feed_forward(self.ffn_norm(h))).contiguous()
  80. # standard openai sampling
  81. def sample(logits: Tensor, temp: float, k: int, p: float, af: float, ap: float):
  82. assert logits.ndim == 1, "only works on 1d tensors"
  83. assert 0 <= p <= 1, "p must be between 0 and 1"
  84. assert 0 <= k <= logits.numel(), "k must be between 0 and numel"
  85. # if temperature is very low just use argmax
  86. if temp < 1e-6: return logits.argmax()
  87. # alpha sampling
  88. if af or ap:
  89. if not hasattr(sample, "alpha_counter"):
  90. setattr(sample, "alpha_counter", Tensor.zeros_like(logits, dtype=dtypes.int32).contiguous())
  91. logits = logits - (sample.alpha_counter * af + (sample.alpha_counter > 0) * ap)
  92. # replace NaNs with -inf
  93. logits = (logits != logits).where(-float("inf"), logits)
  94. # softmax
  95. t = (logits / temp).softmax()
  96. counter, counter2 = Tensor.arange(t.numel(), device=logits.device).contiguous(), Tensor.arange(t.numel() - 1, -1, -1, device=logits.device).contiguous()
  97. # top k
  98. if k:
  99. output, output_indices = Tensor.zeros(k, device=logits.device).contiguous(), Tensor.zeros(k, device=logits.device, dtype=dtypes.int32).contiguous()
  100. for i in range(k):
  101. t_argmax = (t.numel() - ((t == (t_max := t.max())) * counter2).max() - 1).cast(dtypes.default_int)
  102. output = output + t_max.unsqueeze(0).pad(((i, k - i - 1),))
  103. output_indices = output_indices + t_argmax.unsqueeze(0).pad(((i, k - i - 1),))
  104. t = (counter == t_argmax).where(0, t)
  105. # approximate top p
  106. # because we are already limited to top k elements we can do top p "without sorting"
  107. output_cumsum = output[::-1]._cumsum()[::-1] + t.sum()
  108. output = (output_cumsum >= (1 - p)) * output
  109. output_indices = (output_cumsum >= (1 - p)) * output_indices
  110. # sample
  111. output_idx = output.multinomial()
  112. output_token = output_indices[output_idx]
  113. else:
  114. output_token = t.multinomial()
  115. # increase alpha counter
  116. if af or ap:
  117. sample.alpha_counter = (counter == output_token).where(sample.alpha_counter + 1, sample.alpha_counter)
  118. return output_token
  119. class Transformer:
  120. def __init__(self, dim:int, hidden_dim:int, n_heads:int, n_layers:int, norm_eps:float, vocab_size, linear=nn.Linear, n_kv_heads=None, rope_theta=10000, max_context=1024, jit=True, feed_forward=FeedForward):
  121. self.layers = [TransformerBlock(dim, hidden_dim, n_heads, n_kv_heads, norm_eps, max_context, linear, feed_forward=feed_forward) for _ in range(n_layers)]
  122. self.norm = nn.RMSNorm(dim, norm_eps)
  123. self.tok_embeddings = nn.Embedding(vocab_size, dim)
  124. self.output = nn.Linear(dim, vocab_size, bias=False)
  125. self.max_context = max_context
  126. self.freqs_cis = precompute_freqs_cis(dim // n_heads, self.max_context * 2, rope_theta)
  127. self.forward_jit = TinyJit(self.forward) if jit else None
  128. def forward(self, tokens:Tensor, start_pos:Union[Variable,int], temperature:float, top_k:int, top_p:float, alpha_f:float, alpha_p:float):
  129. _bsz, seqlen = tokens.shape
  130. freqs_cis = self.freqs_cis.shrink((None, (start_pos, start_pos+seqlen),None,None,None))
  131. h = self.tok_embeddings(tokens)
  132. mask = Tensor.full((1, 1, seqlen, start_pos+seqlen), float("-inf"), dtype=h.dtype, device=h.device).triu(start_pos+1).realize() if seqlen > 1 else None
  133. for i, layer in enumerate(self.layers):
  134. h = layer(h, start_pos, freqs_cis, mask)
  135. print(f"layer {i}", h.tolist().__str__()[0:100])
  136. logits = self.output(self.norm(h)).float()[:, -1, :]
  137. return sample(logits.flatten(), temperature, top_k, top_p, alpha_f, alpha_p).realize()
  138. def __call__(self, tokens:Tensor, start_pos:Variable, temperature:float=0.0, top_k:int=0, top_p:float=0.8, alpha_f:float=0.0, alpha_p:float=0.0):
  139. # TODO: better way to handle the first call v.s. the rest?
  140. if tokens.shape[0:2] == (1,1) and self.forward_jit is not None:
  141. return self.forward_jit(tokens, Variable("start_pos", 0, self.max_context).bind(start_pos), temperature, top_k, top_p, alpha_f, alpha_p)
  142. return self.forward(tokens, start_pos, temperature, top_k, top_p, alpha_f, alpha_p)
  143. def reset(self):
  144. for layer in self.layers:
  145. print(f"reset layer: {layer.attention.cache_kv}")
  146. layer.attention.cache_kv = layer.attention.cache_kv.zeros_like()
  147. # *** helpers ***
  148. def convert_from_huggingface(weights:Dict[str, Tensor], model: Transformer, n_heads: int, n_kv_heads: int):
  149. def permute(v: Tensor, n_heads: int):
  150. return v.reshape(n_heads, 2, v.shape[0] // n_heads // 2, v.shape[1]).transpose(1, 2).reshape(*v.shape[:2])
  151. keymap = {
  152. "model.embed_tokens.weight": "tok_embeddings.weight",
  153. **{f"model.layers.{l}.input_layernorm.weight": f"layers.{l}.attention_norm.weight" for l in range(len(model.layers))},
  154. **{f"model.layers.{l}.self_attn.{x}_proj.weight": f"layers.{l}.attention.w{x}.weight" for x in ["q", "k", "v", "o"] for l in range(len(model.layers))},
  155. **{f"model.layers.{l}.post_attention_layernorm.weight": f"layers.{l}.ffn_norm.weight" for l in range(len(model.layers))},
  156. **{f"model.layers.{l}.mlp.{x}_proj.weight": f"layers.{l}.feed_forward.w{y}.weight" for x, y in {"gate": "1", "down": "2", "up": "3"}.items() for l in range(len(model.layers))},
  157. "model.norm.weight": "norm.weight",
  158. "lm_head.weight": "output.weight",
  159. }
  160. sd = {}
  161. for k, v in weights.items():
  162. if ".rotary_emb." in k: continue
  163. v = v.to(Device.DEFAULT)
  164. if "model.layers" in k:
  165. if "q_proj" in k:
  166. v = permute(v, n_heads)
  167. elif "k_proj" in k:
  168. v = permute(v, n_kv_heads)
  169. sd[keymap[k]] = v
  170. return sd
  171. def fix_bf16(weights:Dict[Any, Tensor]):
  172. if getenv("SUPPORT_BF16", 1):
  173. # TODO: without casting to float16, 70B llama OOM on tinybox.
  174. return {k:v.cast(dtypes.float16) if v.dtype == dtypes.bfloat16 else v for k,v in weights.items()}
  175. # TODO: check if device supports bf16
  176. return {k:v.llvm_bf16_cast(dtypes.half).to(v.device) if v.dtype == dtypes.bfloat16 else v for k,v in weights.items()}