123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244 |
- from dataclasses import dataclass, field
- from typing import Dict, Optional, Tuple, Union
- import mlx.core as mx
- import mlx.nn as nn
- from mlx_lm.models.base import BaseModelArgs, create_additive_causal_mask
- from ...shard import Shard
- @dataclass
- class NormalModelArgs(BaseModelArgs):
- model_type: str
- hidden_size: int
- num_hidden_layers: int
- intermediate_size: int
- num_attention_heads: int
- rms_norm_eps: float
- vocab_size: int
- num_key_value_heads: int = None
- attention_bias: bool = False
- mlp_bias: bool = False
- rope_theta: float = 10000
- rope_traditional: bool = False
- rope_scaling: Optional[Dict[str, Union[float, str]]] = None
- tie_word_embeddings: bool = True
- def __post_init__(self):
- if self.num_key_value_heads is None:
- self.num_key_value_heads = self.num_attention_heads
- if self.rope_scaling:
- required_keys = {"factor", "type"}
- if not all(key in self.rope_scaling for key in required_keys):
- raise ValueError(f"rope_scaling must contain keys {required_keys}")
- if self.rope_scaling["type"] != "linear":
- raise ValueError("rope_scaling 'type' currently only supports 'linear'")
- @dataclass
- class ModelArgs(NormalModelArgs):
- shard: Shard = field(default_factory=lambda: Shard("", 0, 0, 0))
- def __post_init__(self):
- super().__post_init__() # Ensure parent initializations are respected
- if isinstance(self.shard, Shard):
- return
- if not isinstance(self.shard, dict):
- raise TypeError(f"Expected shard to be a Shard instance or a dict, got {type(self.shard)} instead")
- self.shard = Shard(**self.shard)
- class Attention(nn.Module):
- def __init__(self, args: ModelArgs):
- super().__init__()
- dim = args.hidden_size
- self.n_heads = n_heads = args.num_attention_heads
- self.n_kv_heads = n_kv_heads = args.num_key_value_heads
- head_dim = args.hidden_size // n_heads
- self.scale = head_dim**-0.5
- if hasattr(args, "attention_bias"):
- attention_bias = args.attention_bias
- else:
- attention_bias = False
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias)
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attention_bias)
- rope_scale = (
- 1 / args.rope_scaling["factor"]
- if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
- else 1
- )
- self.rope = nn.RoPE(
- head_dim,
- traditional=args.rope_traditional,
- base=args.rope_theta,
- scale=rope_scale,
- )
- def __call__(
- self,
- x: mx.array,
- mask: Optional[mx.array] = None,
- cache: Optional[Tuple[mx.array, mx.array]] = None,
- ) -> mx.array:
- B, L, D = x.shape
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
- # Prepare the queries, keys and values for the attention computation
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
- keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
- values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
- if cache is not None:
- queries = self.rope(queries, offset=cache.offset)
- keys = self.rope(keys, offset=cache.offset)
- keys, values = cache.update_and_fetch(keys, values)
- else:
- queries = self.rope(queries)
- keys = self.rope(keys)
- output = mx.fast.scaled_dot_product_attention(
- queries, keys, values, scale=self.scale, mask=mask
- )
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
- return self.o_proj(output)
- class MLP(nn.Module):
- def __init__(self, args: ModelArgs):
- super().__init__()
- dim = args.hidden_size
- hidden_dim = args.intermediate_size
- if hasattr(args, "mlp_bias"):
- mlp_bias = args.mlp_bias
- else:
- mlp_bias = False
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias)
- self.down_proj = nn.Linear(hidden_dim, dim, bias=mlp_bias)
- self.up_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias)
- def __call__(self, x) -> mx.array:
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
- class TransformerBlock(nn.Module):
- def __init__(self, args: ModelArgs):
- super().__init__()
- self.num_attention_heads = args.num_attention_heads
- self.hidden_size = args.hidden_size
- self.self_attn = Attention(args)
- self.mlp = MLP(args)
- self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
- self.post_attention_layernorm = nn.RMSNorm(
- args.hidden_size, eps=args.rms_norm_eps
- )
- self.args = args
- def __call__(
- self,
- x: mx.array,
- mask: Optional[mx.array] = None,
- cache: Optional[Tuple[mx.array, mx.array]] = None,
- ) -> mx.array:
- r = self.self_attn(self.input_layernorm(x), mask, cache)
- h = x + r
- r = self.mlp(self.post_attention_layernorm(h))
- out = h + r
- return out
- class LlamaModel(nn.Module):
- def __init__(self, args: ModelArgs):
- super().__init__()
- self.args = args
- self.vocab_size = args.vocab_size
- self.num_hidden_layers = args.num_hidden_layers
- assert self.vocab_size > 0
- self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
- self.layers = [
- TransformerBlock(args=args) for _ in range(args.shard.n_layers)
- ]
- self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
- def __call__(
- self,
- inputs: mx.array,
- cache=None,
- ):
- if self.args.shard.is_first_layer():
- h = self.embed_tokens(inputs)
- else:
- h = inputs
- mask = None
- if h.shape[1] > 1:
- mask = create_additive_causal_mask(
- h.shape[1], cache[0].offset if cache is not None else 0
- )
- mask = mask.astype(h.dtype)
- if cache is None:
- cache = [None] * len(self.layers)
- for layer, c in zip(self.layers, cache):
- h = layer(h, mask, cache=c)
- if self.args.shard.is_last_layer():
- return self.norm(h)
- else:
- return h
- class Model(nn.Module):
- def __init__(self, args: ModelArgs):
- super().__init__()
- self.args = args
- self.model_type = args.model_type
- self.model = LlamaModel(args)
- if not args.tie_word_embeddings:
- self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
- def __call__(
- self,
- inputs: mx.array,
- cache=None,
- ):
- out = self.model(inputs, cache)
- if self.args.shard.is_last_layer():
- if self.args.tie_word_embeddings:
- out = self.model.embed_tokens.as_linear(out)
- else:
- out = self.lm_head(out)
- return out
- def sanitize(self, weights):
- # Remove unused precomputed rotary freqs
- return {
- k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
- }
- @property
- def layers(self):
- return self.model.layers
- @property
- def head_dim(self):
- return self.args.hidden_size // self.args.num_attention_heads
- @property
- def n_kv_heads(self):
- return self.args.num_key_value_heads
|