123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- import grpc
- import numpy as np
- from typing import Optional, Tuple
- # These would be generated from the .proto file
- from . import node_service_pb2
- from . import node_service_pb2_grpc
- from ..peer_handle import PeerHandle
- from inference.shard import Shard
- from topology.topology import Topology
- from topology.device_capabilities import DeviceCapabilities
- class GRPCPeerHandle(PeerHandle):
- def __init__(self, id: str, address: str, device_capabilities: DeviceCapabilities):
- self._id = id
- self.address = address
- self._device_capabilities = device_capabilities
- self.channel = None
- self.stub = None
- def id(self) -> str:
- return self._id
- def device_capabilities(self) -> DeviceCapabilities:
- return self._device_capabilities
- async def connect(self):
- self.channel = grpc.aio.insecure_channel(self.address, options=[
- ('grpc.max_metadata_size', 32*1024*1024)
- ])
- self.stub = node_service_pb2_grpc.NodeServiceStub(self.channel)
- async def is_connected(self) -> bool:
- return self.channel is not None and self.channel.get_state() == grpc.ChannelConnectivity.READY
- async def disconnect(self):
- if self.channel:
- await self.channel.close()
- self.channel = None
- self.stub = None
- async def send_prompt(self, shard: Shard, prompt: str, request_id: Optional[str] = None) -> Optional[np.array]:
- request = node_service_pb2.PromptRequest(prompt=prompt, shard=node_service_pb2.Shard(model_id=shard.model_id, start_layer=shard.start_layer, end_layer=shard.end_layer, n_layers=shard.n_layers), request_id=request_id)
- response = await self.stub.SendPrompt(request)
- if not response.tensor_data or not response.shape or not response.dtype:
- return None
- return np.frombuffer(response.tensor_data, dtype=np.dtype(response.dtype)).reshape(response.shape)
- async def send_tensor(self, shard: Shard, tensor: np.ndarray, request_id: Optional[str] = None) -> Optional[np.array]:
- request = node_service_pb2.TensorRequest(
- shard=node_service_pb2.Shard(model_id=shard.model_id, start_layer=shard.start_layer, end_layer=shard.end_layer, n_layers=shard.n_layers),
- tensor = node_service_pb2.Tensor(
- tensor_data=tensor.tobytes(),
- shape=tensor.shape,
- dtype=str(tensor.dtype)
- ),
- request_id=request_id
- )
- response = await self.stub.SendTensor(request)
- if not response.tensor_data or not response.shape or not response.dtype:
- return None
- return np.frombuffer(response.tensor_data, dtype=np.dtype(response.dtype)).reshape(response.shape)
- async def get_inference_result(self, request_id: str) -> Tuple[Optional[np.ndarray], bool]:
- request = node_service_pb2.GetInferenceResultRequest(request_id=request_id)
- response = await self.stub.GetInferenceResult(request)
- if response.tensor is None:
- return None, response.is_finished
- return np.frombuffer(response.tensor.tensor_data, dtype=np.dtype(response.tensor.dtype)).reshape(response.tensor.shape), response.is_finished
- async def reset_shard(self, shard: Shard) -> None:
- request = node_service_pb2.ResetShardRequest(shard=node_service_pb2.Shard(model_id=shard.model_id, start_layer=shard.start_layer, end_layer=shard.end_layer, n_layers=shard.n_layers))
- await self.stub.ResetShard(request)
- async def collect_topology(self, max_depth: int) -> Topology:
- request = node_service_pb2.CollectTopologyRequest(max_depth=max_depth)
- response = await self.stub.CollectTopology(request)
- topology = Topology()
- for node_id, capabilities in response.nodes.items():
- device_capabilities = DeviceCapabilities(model=capabilities.model, chip=capabilities.chip, memory=capabilities.memory)
- topology.update_node(node_id, device_capabilities)
- for node_id, peers in response.peer_graph.items():
- for peer_id in peers.peer_ids:
- topology.add_edge(node_id, peer_id)
- return topology
|