grpc_peer_handle.py 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. import grpc
  2. import numpy as np
  3. from typing import Optional, Tuple
  4. # These would be generated from the .proto file
  5. from . import node_service_pb2
  6. from . import node_service_pb2_grpc
  7. from ..peer_handle import PeerHandle
  8. from inference.shard import Shard
  9. from topology.topology import Topology
  10. from topology.device_capabilities import DeviceCapabilities
  11. class GRPCPeerHandle(PeerHandle):
  12. def __init__(self, id: str, address: str, device_capabilities: DeviceCapabilities):
  13. self._id = id
  14. self.address = address
  15. self._device_capabilities = device_capabilities
  16. self.channel = None
  17. self.stub = None
  18. def id(self) -> str:
  19. return self._id
  20. def device_capabilities(self) -> DeviceCapabilities:
  21. return self._device_capabilities
  22. async def connect(self):
  23. self.channel = grpc.aio.insecure_channel(self.address, options=[
  24. ('grpc.max_metadata_size', 32*1024*1024)
  25. ])
  26. self.stub = node_service_pb2_grpc.NodeServiceStub(self.channel)
  27. async def is_connected(self) -> bool:
  28. return self.channel is not None and self.channel.get_state() == grpc.ChannelConnectivity.READY
  29. async def disconnect(self):
  30. if self.channel:
  31. await self.channel.close()
  32. self.channel = None
  33. self.stub = None
  34. async def send_prompt(self, shard: Shard, prompt: str, request_id: Optional[str] = None) -> Optional[np.array]:
  35. request = node_service_pb2.PromptRequest(prompt=prompt, shard=node_service_pb2.Shard(model_id=shard.model_id, start_layer=shard.start_layer, end_layer=shard.end_layer, n_layers=shard.n_layers), request_id=request_id)
  36. response = await self.stub.SendPrompt(request)
  37. if not response.tensor_data or not response.shape or not response.dtype:
  38. return None
  39. return np.frombuffer(response.tensor_data, dtype=np.dtype(response.dtype)).reshape(response.shape)
  40. async def send_tensor(self, shard: Shard, tensor: np.ndarray, request_id: Optional[str] = None) -> Optional[np.array]:
  41. request = node_service_pb2.TensorRequest(
  42. shard=node_service_pb2.Shard(model_id=shard.model_id, start_layer=shard.start_layer, end_layer=shard.end_layer, n_layers=shard.n_layers),
  43. tensor = node_service_pb2.Tensor(
  44. tensor_data=tensor.tobytes(),
  45. shape=tensor.shape,
  46. dtype=str(tensor.dtype)
  47. ),
  48. request_id=request_id
  49. )
  50. response = await self.stub.SendTensor(request)
  51. if not response.tensor_data or not response.shape or not response.dtype:
  52. return None
  53. return np.frombuffer(response.tensor_data, dtype=np.dtype(response.dtype)).reshape(response.shape)
  54. async def get_inference_result(self, request_id: str) -> Tuple[Optional[np.ndarray], bool]:
  55. request = node_service_pb2.GetInferenceResultRequest(request_id=request_id)
  56. response = await self.stub.GetInferenceResult(request)
  57. if response.tensor is None:
  58. return None, response.is_finished
  59. return np.frombuffer(response.tensor.tensor_data, dtype=np.dtype(response.tensor.dtype)).reshape(response.tensor.shape), response.is_finished
  60. async def reset_shard(self, shard: Shard) -> None:
  61. request = node_service_pb2.ResetShardRequest(shard=node_service_pb2.Shard(model_id=shard.model_id, start_layer=shard.start_layer, end_layer=shard.end_layer, n_layers=shard.n_layers))
  62. await self.stub.ResetShard(request)
  63. async def collect_topology(self, max_depth: int) -> Topology:
  64. request = node_service_pb2.CollectTopologyRequest(max_depth=max_depth)
  65. response = await self.stub.CollectTopology(request)
  66. topology = Topology()
  67. for node_id, capabilities in response.nodes.items():
  68. device_capabilities = DeviceCapabilities(model=capabilities.model, chip=capabilities.chip, memory=capabilities.memory)
  69. topology.update_node(node_id, device_capabilities)
  70. for node_id, peers in response.peer_graph.items():
  71. for peer_id in peers.peer_ids:
  72. topology.add_edge(node_id, peer_id)
  73. return topology