123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- from typing import List, Dict, Optional, Callable, Tuple
- import numpy as np
- from networking import Discovery, PeerHandle, Server
- from inference.inference_engine import InferenceEngine, Shard
- from .node import Node
- from topology.topology import Topology
- from topology.device_capabilities import device_capabilities
- from topology.partitioning_strategy import PartitioningStrategy
- from topology.partitioning_strategy import Partition
- import asyncio
- import uuid
- class StandardNode(Node):
- def __init__(self, id: str, server: Server, inference_engine: InferenceEngine, discovery: Discovery, partitioning_strategy: PartitioningStrategy = None, on_token: Callable[[List[int]], None] = None, max_generate_tokens: int = 50):
- self.id = id
- self.inference_engine = inference_engine
- self.server = server
- self.discovery = discovery
- self.partitioning_strategy = partitioning_strategy
- self.peers: List[PeerHandle] = {}
- self.topology: Topology = Topology()
- self.device_capabilities = device_capabilities()
- self.buffered_token_output: Dict[str, Tuple[List[int], bool]] = {}
- self.on_token = on_token
- self.max_generate_tokens = max_generate_tokens
- async def start(self, wait_for_peers: int = 0) -> None:
- await self.server.start()
- await self.discovery.start()
- await self.update_peers(wait_for_peers)
- await self.collect_topology()
- print(f"Collected topology: {self.topology}")
- asyncio.create_task(self.periodic_topology_collection(5))
- async def stop(self) -> None:
- await self.discovery.stop()
- await self.server.stop()
- async def process_prompt(self, shard: Shard, prompt: str, request_id: Optional[str] = None) -> Optional[np.ndarray]:
- if request_id is None:
- request_id = str(uuid.uuid4())
- if request_id not in self.buffered_token_output:
- self.buffered_token_output[request_id] = ([], False)
- print(f"[{request_id}] process prompt: {shard}, {prompt}")
- result, is_finished = await self.inference_engine.infer_prompt(self.get_current_shard(shard), prompt)
- self.buffered_token_output[request_id] = (self.buffered_token_output[request_id][0], is_finished)
- if result.size == 1:
- self.buffered_token_output[request_id][0].append(result.item())
- self.on_token(self.buffered_token_output[request_id][0])
- print(f"[{request_id}] result size: {result.size}, is finished: {is_finished}, buffered tokens: {len(self.buffered_token_output[request_id])}")
- if not is_finished and len(self.buffered_token_output[request_id]) < self.max_generate_tokens:
- asyncio.create_task(self.forward_tensor_to_next_shard(shard, result, request_id))
- return np.array(self.buffered_token_output[request_id]) if len(self.buffered_token_output[request_id]) > 0 else None
- async def process_tensor(self, shard: Shard, tensor: np.ndarray, request_id: Optional[str] = None) -> Optional[np.ndarray]:
- if request_id is None:
- request_id = str(uuid.uuid4())
- if request_id not in self.buffered_token_output:
- self.buffered_token_output[request_id] = ([], False)
- try:
- print(f"[{request_id}] process_tensor: {shard}, {tensor}")
- result, is_finished = await self.inference_engine.infer_tensor(self.get_current_shard(shard), tensor)
- self.buffered_token_output[request_id] = (self.buffered_token_output[request_id][0], is_finished)
- if result.size == 1: # we got a new token out
- self.buffered_token_output[request_id][0].append(result.item())
- self.on_token(self.buffered_token_output[request_id][0])
- print(f"[{request_id}] result size: {result.size}, is finished: {is_finished}, buffered tokens: {len(self.buffered_token_output[request_id])}")
- if not is_finished and len(self.buffered_token_output[request_id]) < self.max_generate_tokens:
- asyncio.create_task(self.forward_tensor_to_next_shard(shard, result, request_id))
- return np.array(self.buffered_token_output[request_id][0]) if len(self.buffered_token_output[request_id][0]) > 0 else None
- except Exception as e:
- import traceback
- print(f"Error processing tensor for shard {shard}: {e}")
- traceback.print_exc()
- return None
- async def forward_tensor_to_next_shard(self, shard: Shard, tensor: np.ndarray, request_id: str) -> None:
- if not self.partitioning_strategy:
- print("No partitioning strategy found. Skipping forward.")
- return
- partitions = self.partitioning_strategy.partition(self.topology)
- current_partition_index = next((i for i, p in enumerate(partitions) if p.node_id == self.id), None)
- print(f"Current partition index: {current_partition_index}")
- if current_partition_index is not None:
- next_partition_index = (current_partition_index + 1) % len(partitions)
- next_partition: Partition = partitions[next_partition_index]
- print(f"Computed next from: {shard}, {self.topology}. Next partition: {next_partition}")
- if next_partition:
- if next_partition.node_id == self.id:
- await self.process_tensor(shard, tensor, request_id)
- return
- target_peer = next((p for p in self.peers if p.id() == next_partition.node_id), None)
- if not target_peer:
- raise ValueError(f"Peer for {next_partition} not found")
- start_layer = int(next_partition.start * shard.n_layers)
- end_layer = int(next_partition.end * shard.n_layers) - 1
- next_shard = Shard(shard.model_id, start_layer, end_layer, shard.n_layers)
- print(f"Sending tensor to {target_peer.id()} for shard: {next_shard}: {tensor}")
- await target_peer.send_tensor(next_shard, tensor, request_id)
- def get_current_shard(self, shard: Shard) -> Shard:
- partitions = self.partitioning_strategy.partition(self.topology)
- current_partition_index = next((i for i, p in enumerate(partitions) if p.node_id == self.id), None)
- if current_partition_index is None:
- raise ValueError(f"No current partition found for node: {self.id}")
- current_partition = partitions[current_partition_index]
- start_layer = int(current_partition.start * shard.n_layers)
- end_layer = int(current_partition.end * shard.n_layers) - 1
- return Shard(shard.model_id, start_layer, end_layer, shard.n_layers)
- async def reset_shard(self, shard: Shard) -> None:
- # Implement shard reset logic
- print(f"Resetting shard: {shard}")
- self.buffered_token_output = {}
- await self.inference_engine.reset_shard(self.get_current_shard(shard))
- async def update_peers(self, wait_for_peers: int = 0) -> None:
- self.peers = await self.discovery.discover_peers(wait_for_peers)
- print(f"Starting with the following peers: {self.peers}")
- print("Connecting to new peers...")
- for peer in self.peers:
- is_connected = await peer.is_connected()
- print(f"Connected to {peer.id()}: {is_connected}")
- if not is_connected:
- await peer.connect()
- print(f"Connected to peer {peer.id()}")
- async def collect_topology(self, max_depth: int = 4) -> Topology:
- self.topology.update_node(self.id, self.device_capabilities)
- for peer in self.peers:
- self.topology.update_node(peer.id(), peer.device_capabilities())
- self.topology.add_edge(self.id, peer.id())
- if max_depth > 0:
- try:
- other_topology = await peer.collect_topology(max_depth = max_depth - 1)
- print(f"Collected topology from: {peer.id()}: {other_topology}")
- self.topology.merge(other_topology)
- except Exception as e:
- print(f"Error collecting topology from {peer.id()}: {e}")
- return self.topology
- async def periodic_topology_collection(self, interval: int):
- while True:
- await asyncio.sleep(interval)
- try:
- await self.update_peers()
- await self.collect_topology()
- except Exception as e:
- print(f"Error collecting topology: {e}")
- print("Topology collection task executed.")
- print(f"Current topology: {self.topology}")
- async def get_inference_result(self, request_id: str) -> Tuple[Optional[np.ndarray], bool]:
- if request_id not in self.buffered_token_output:
- return None, False
- return np.array(self.buffered_token_output[request_id][0]), self.buffered_token_output[request_id][1]
|