main.py 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190
  1. import argparse
  2. import asyncio
  3. import signal
  4. import json
  5. import time
  6. import traceback
  7. import uuid
  8. from exo.orchestration.standard_node import StandardNode
  9. from exo.networking.grpc.grpc_server import GRPCServer
  10. from exo.networking.grpc.grpc_discovery import GRPCDiscovery
  11. from exo.topology.ring_memory_weighted_partitioning_strategy import RingMemoryWeightedPartitioningStrategy
  12. from exo.api import ChatGPTAPI
  13. from exo.download.shard_download import ShardDownloader, RepoProgressEvent
  14. from exo.download.hf.hf_shard_download import HFShardDownloader
  15. from exo.helpers import print_yellow_exo, find_available_port, DEBUG, get_system_info, get_or_create_node_id, get_all_ip_addresses, terminal_link
  16. from exo.inference.shard import Shard
  17. from exo.inference.inference_engine import get_inference_engine, InferenceEngine
  18. from exo.inference.tokenizers import resolve_tokenizer
  19. from exo.orchestration.node import Node
  20. from exo.models import model_base_shards
  21. from exo.viz.topology_viz import TopologyViz
  22. # parse args
  23. parser = argparse.ArgumentParser(description="Initialize GRPC Discovery")
  24. parser.add_argument("--node-id", type=str, default=None, help="Node ID")
  25. parser.add_argument("--node-host", type=str, default="0.0.0.0", help="Node host")
  26. parser.add_argument("--node-port", type=int, default=None, help="Node port")
  27. parser.add_argument("--listen-port", type=int, default=5678, help="Listening port for discovery")
  28. parser.add_argument("--download-quick-check", action="store_true", help="Quick check local path for model shards download")
  29. parser.add_argument("--max-parallel-downloads", type=int, default=4, help="Max parallel downloads for model shards download")
  30. parser.add_argument("--prometheus-client-port", type=int, default=None, help="Prometheus client port")
  31. parser.add_argument("--broadcast-port", type=int, default=5678, help="Broadcast port for discovery")
  32. parser.add_argument("--discovery-timeout", type=int, default=30, help="Discovery timeout in seconds")
  33. parser.add_argument("--wait-for-peers", type=int, default=0, help="Number of peers to wait to connect to before starting")
  34. parser.add_argument("--chatgpt-api-port", type=int, default=8000, help="ChatGPT API port")
  35. parser.add_argument("--chatgpt-api-response-timeout-secs", type=int, default=90, help="ChatGPT API response timeout in seconds")
  36. parser.add_argument("--max-generate-tokens", type=int, default=1024, help="Max tokens to generate in each request")
  37. parser.add_argument("--inference-engine", type=str, default=None, help="Inference engine to use")
  38. parser.add_argument("--disable-tui", action=argparse.BooleanOptionalAction, help="Disable TUI")
  39. parser.add_argument("--run-model", type=str, help="Specify a model to run directly")
  40. parser.add_argument("--prompt", type=str, help="Prompt for the model when using --run-model", default="Who are you?")
  41. args = parser.parse_args()
  42. print_yellow_exo()
  43. system_info = get_system_info()
  44. print(f"Detected system: {system_info}")
  45. shard_downloader: ShardDownloader = HFShardDownloader(quick_check=args.download_quick_check, max_parallel_downloads=args.max_parallel_downloads)
  46. inference_engine_name = args.inference_engine or ("mlx" if system_info == "Apple Silicon Mac" else "tinygrad")
  47. inference_engine = get_inference_engine(inference_engine_name, shard_downloader)
  48. print(f"Using inference engine: {inference_engine.__class__.__name__} with shard downloader: {shard_downloader.__class__.__name__}")
  49. if args.node_port is None:
  50. args.node_port = find_available_port(args.node_host)
  51. if DEBUG >= 1: print(f"Using available port: {args.node_port}")
  52. args.node_id = args.node_id or get_or_create_node_id()
  53. chatgpt_api_endpoints = [f"http://{ip}:{args.chatgpt_api_port}/v1/chat/completions" for ip in get_all_ip_addresses()]
  54. web_chat_urls = [f"http://{ip}:{args.chatgpt_api_port}" for ip in get_all_ip_addresses()]
  55. if DEBUG >= 0:
  56. print("Chat interface started:")
  57. for web_chat_url in web_chat_urls:
  58. print(f" - {terminal_link(web_chat_url)}")
  59. print("ChatGPT API endpoint served at:")
  60. for chatgpt_api_endpoint in chatgpt_api_endpoints:
  61. print(f" - {terminal_link(chatgpt_api_endpoint)}")
  62. discovery = GRPCDiscovery(args.node_id, args.node_port, args.listen_port, args.broadcast_port, discovery_timeout=args.discovery_timeout)
  63. topology_viz = TopologyViz(chatgpt_api_endpoints=chatgpt_api_endpoints, web_chat_urls=web_chat_urls) if not args.disable_tui else None
  64. node = StandardNode(
  65. args.node_id,
  66. None,
  67. inference_engine,
  68. discovery,
  69. partitioning_strategy=RingMemoryWeightedPartitioningStrategy(),
  70. max_generate_tokens=args.max_generate_tokens,
  71. topology_viz=topology_viz
  72. )
  73. server = GRPCServer(node, args.node_host, args.node_port)
  74. node.server = server
  75. api = ChatGPTAPI(
  76. node,
  77. inference_engine.__class__.__name__,
  78. response_timeout_secs=args.chatgpt_api_response_timeout_secs,
  79. on_chat_completion_request=lambda req_id, __, prompt: topology_viz.update_prompt(req_id, prompt) if topology_viz else None
  80. )
  81. node.on_token.register("update_topology_viz").on_next(
  82. lambda req_id, tokens, __: topology_viz.update_prompt_output(req_id, inference_engine.tokenizer.decode(tokens)) if topology_viz and hasattr(inference_engine, "tokenizer") else None
  83. )
  84. def preemptively_start_download(request_id: str, opaque_status: str):
  85. try:
  86. status = json.loads(opaque_status)
  87. if status.get("type") == "node_status" and status.get("status") == "start_process_prompt":
  88. current_shard = node.get_current_shard(Shard.from_dict(status.get("shard")))
  89. if DEBUG >= 2: print(f"Preemptively starting download for {current_shard}")
  90. asyncio.create_task(shard_downloader.ensure_shard(current_shard))
  91. except Exception as e:
  92. if DEBUG >= 2:
  93. print(f"Failed to preemptively start download: {e}")
  94. traceback.print_exc()
  95. node.on_opaque_status.register("start_download").on_next(preemptively_start_download)
  96. if args.prometheus_client_port:
  97. from exo.stats.metrics import start_metrics_server
  98. start_metrics_server(node, args.prometheus_client_port)
  99. last_broadcast_time = 0
  100. def throttled_broadcast(shard: Shard, event: RepoProgressEvent):
  101. global last_broadcast_time
  102. current_time = time.time()
  103. if event.status == "complete" or current_time - last_broadcast_time >= 0.1:
  104. last_broadcast_time = current_time
  105. asyncio.create_task(node.broadcast_opaque_status("", json.dumps({"type": "download_progress", "node_id": node.id, "progress": event.to_dict()})))
  106. shard_downloader.on_progress.register("broadcast").on_next(throttled_broadcast)
  107. async def shutdown(signal, loop):
  108. """Gracefully shutdown the server and close the asyncio loop."""
  109. print(f"Received exit signal {signal.name}...")
  110. print("Thank you for using exo.")
  111. print_yellow_exo()
  112. server_tasks = [t for t in asyncio.all_tasks() if t is not asyncio.current_task()]
  113. [task.cancel() for task in server_tasks]
  114. print(f"Cancelling {len(server_tasks)} outstanding tasks")
  115. await asyncio.gather(*server_tasks, return_exceptions=True)
  116. await server.stop()
  117. loop.stop()
  118. async def run_model_cli(node: Node, inference_engine: InferenceEngine, model_name: str, prompt: str):
  119. shard = model_base_shards.get(model_name, {}).get(inference_engine.__class__.__name__)
  120. if not shard:
  121. print(f"Error: Unsupported model '{model_name}' for inference engine {inference_engine.__class__.__name__}")
  122. return
  123. tokenizer = await resolve_tokenizer(shard.model_id)
  124. request_id = str(uuid.uuid4())
  125. callback_id = f"cli-wait-response-{request_id}"
  126. callback = node.on_token.register(callback_id)
  127. if topology_viz:
  128. topology_viz.update_prompt(request_id, prompt)
  129. prompt = tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True)
  130. try:
  131. print(f"Processing prompt: {prompt}")
  132. await node.process_prompt(shard, prompt, None, request_id=request_id)
  133. _, tokens, _ = await callback.wait(lambda _request_id, tokens, is_finished: _request_id == request_id and is_finished, timeout=300)
  134. print("\nGenerated response:")
  135. print(tokenizer.decode(tokens))
  136. except Exception as e:
  137. print(f"Error processing prompt: {str(e)}")
  138. traceback.print_exc()
  139. finally:
  140. node.on_token.deregister(callback_id)
  141. async def main():
  142. loop = asyncio.get_running_loop()
  143. # Use a more direct approach to handle signals
  144. def handle_exit():
  145. asyncio.ensure_future(shutdown(signal.SIGTERM, loop))
  146. for s in [signal.SIGINT, signal.SIGTERM]:
  147. loop.add_signal_handler(s, handle_exit)
  148. await node.start(wait_for_peers=args.wait_for_peers)
  149. if args.run_model:
  150. await run_model_cli(node, inference_engine, args.run_model, args.prompt)
  151. else:
  152. asyncio.create_task(api.run(port=args.chatgpt_api_port)) # Start the API server as a non-blocking task
  153. await asyncio.Event().wait()
  154. if __name__ == "__main__":
  155. loop = asyncio.new_event_loop()
  156. asyncio.set_event_loop(loop)
  157. try:
  158. loop.run_until_complete(main())
  159. except KeyboardInterrupt:
  160. print("Received keyboard interrupt. Shutting down...")
  161. finally:
  162. loop.run_until_complete(shutdown(signal.SIGTERM, loop))
  163. loop.close()