123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- from pathlib import Path
- import json
- import os
- from exo.inference.tinygrad.models.llama import Transformer, convert_from_huggingface, fix_bf16
- from exo.inference.shard import Shard
- from exo.inference.tokenizers import resolve_tokenizer
- from tinygrad.nn.state import safe_load, torch_load, load_state_dict
- from tinygrad import Tensor, dtypes, nn, Context
- from transformers import AutoTokenizer
- from exo.inference.inference_engine import InferenceEngine
- from typing import Optional, Tuple
- import numpy as np
- from exo.inference.tinygrad.tinygrad_helpers import concat_weights, load
- from exo.download.shard_download import ShardDownloader
- from concurrent.futures import ThreadPoolExecutor
- import asyncio
- import threading
- from functools import partial
- Tensor.no_grad = True
- # default settings
- TEMPERATURE = int(os.getenv("TEMPERATURE", 0.85))
- TOP_K = 25
- TOP_P = 0.9
- ALPHA_F = 0.1
- ALPHA_P = 0.0
- MODEL_PARAMS = {
- "8B": {"args": {"dim": 4096, "n_heads": 32, "n_kv_heads": 8, "n_layers": 32, "norm_eps": 1e-5, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 14336}, "files": 1},
- "70B": {"args": {"dim": 8192, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-5, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 28672}, "files": 8}
- }
- def build_transformer(model_path: Path, shard: Shard, model_size="8B", device=None):
- # build model
- linear = nn.Linear
- with Context(THREEFRY=0):
- model = Transformer(**MODEL_PARAMS[model_size]["args"], linear=linear, max_context=8192, jit=True, shard=shard)
- # load weights
- if model_path.is_dir():
- if (model_path/"model.safetensors.index.json").exists(): weights = load(str(model_path/"model.safetensors.index.json"), shard)
- elif (model_path/"model.safetensors").exists(): weights = load(str(model_path/"model.safetensors"), shard)
- else: weights = concat_weights([load(str(model_path/f"consolidated.{i:02d}.pth"), shard) for i in range(MODEL_PARAMS[model_size]["files"])], device[0] if isinstance(device, tuple) else device)
- else:
- weights = load(str(model_path), shard)
- weights = convert_from_huggingface(weights, model, MODEL_PARAMS[model_size]["args"]["n_heads"], MODEL_PARAMS[model_size]["args"]["n_kv_heads"])
- weights = fix_bf16(weights)
- with Context(BEAM=0):
- # replace weights in model
- load_state_dict(model, weights, strict=False, consume=False) # consume=True
- return model
- class TinygradDynamicShardInferenceEngine(InferenceEngine):
- def __init__(self, shard_downloader: ShardDownloader):
- self.shard = None
- self.shard_downloader = shard_downloader
- self.executor = ThreadPoolExecutor(max_workers=1)
- async def infer_prompt(self, request_id: str, shard: Shard, prompt: str, image_str: Optional[str] = None, inference_state: Optional[str] = None) -> (np.ndarray, str, bool):
- await self.ensure_shard(shard)
- start_pos = json.loads(inference_state or "{}").get("start_pos", 0)
- n_captured_toks = json.loads(inference_state or "{}").get("n_captured_toks", 0)
- toks = await asyncio.get_event_loop().run_in_executor(self.executor, self.tokenizer.encode, prompt)
- h = await asyncio.get_event_loop().run_in_executor(self.executor, lambda: self.model(Tensor([toks]), start_pos, TEMPERATURE).realize())
- if h.shape == (1,):
- start_pos += len(toks)
- start_pos += 1
- n_captured_toks = 0
- return np.array([[h.item()]]), json.dumps({"start_pos": start_pos, "n_captured_toks": n_captured_toks}), h.item() == self.tokenizer.eos_token_id
- else:
- n_captured_toks = len(toks)
- return h.numpy(), json.dumps({"start_pos": start_pos, "n_captured_toks": n_captured_toks}), False
- async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray, inference_state: Optional[str] = None) -> Tuple[np.ndarray, str, bool]:
- await self.ensure_shard(shard)
- start_pos = json.loads(inference_state or "{}").get("start_pos", 0)
- n_captured_toks = json.loads(inference_state or "{}").get("n_captured_toks", 0)
- h = await asyncio.get_event_loop().run_in_executor(self.executor, lambda: self.model(Tensor(input_data), start_pos, TEMPERATURE).realize())
- if h.shape == (1,):
- start_pos += n_captured_toks
- start_pos += 1
- n_captured_toks = 0
- return np.array([[h.item()]]), json.dumps({"start_pos": start_pos, "n_captured_toks": n_captured_toks}), h.item() == self.tokenizer.eos_token_id
- else:
- return h.numpy(), json.dumps({"start_pos": start_pos, "n_captured_toks": n_captured_toks}), False
- async def ensure_shard(self, shard: Shard):
- if self.shard == shard:
- return
- model_path = await self.shard_downloader.ensure_shard(shard)
- if self.shard != shard:
- self.model = await asyncio.get_event_loop().run_in_executor(self.executor, build_transformer, model_path, shard, "8B" if "8b" in shard.model_id.lower() else "70B")
- tokenizer_path = str((model_path if model_path.is_dir() else model_path.parent))
- self.tokenizer = await resolve_tokenizer(tokenizer_path)
- self.shard = shard
|