inference.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. from pathlib import Path
  2. import json
  3. import os
  4. from exo.inference.tinygrad.models.llama import Transformer, convert_from_huggingface, fix_bf16
  5. from exo.inference.shard import Shard
  6. from exo.inference.tokenizers import resolve_tokenizer
  7. from tinygrad.nn.state import load_state_dict
  8. from tinygrad import Tensor, nn, Context
  9. from exo.inference.inference_engine import InferenceEngine
  10. from typing import Optional, Tuple
  11. import numpy as np
  12. from exo.inference.tinygrad.tinygrad_helpers import concat_weights, load
  13. from exo.download.shard_download import ShardDownloader
  14. from concurrent.futures import ThreadPoolExecutor
  15. import asyncio
  16. Tensor.no_grad = True
  17. # default settings
  18. TEMPERATURE = int(os.getenv("TEMPERATURE", 0.85))
  19. TOP_K = 25
  20. TOP_P = 0.9
  21. ALPHA_F = 0.1
  22. ALPHA_P = 0.0
  23. MODEL_PARAMS = {
  24. "8B": {"args": {"dim": 4096, "n_heads": 32, "n_kv_heads": 8, "n_layers": 32, "norm_eps": 1e-5, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 14336}, "files": 1},
  25. "70B": {"args": {"dim": 8192, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-5, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 28672}, "files": 8}
  26. }
  27. def build_transformer(model_path: Path, shard: Shard, model_size="8B", device=None):
  28. # build model
  29. linear = nn.Linear
  30. with Context(THREEFRY=0):
  31. model = Transformer(**MODEL_PARAMS[model_size]["args"], linear=linear, max_context=8192, jit=True, shard=shard)
  32. # load weights
  33. if model_path.is_dir():
  34. if (model_path/"model.safetensors.index.json").exists(): weights = load(str(model_path/"model.safetensors.index.json"), shard)
  35. elif (model_path/"model.safetensors").exists(): weights = load(str(model_path/"model.safetensors"), shard)
  36. else: weights = concat_weights([load(str(model_path/f"consolidated.{i:02d}.pth"), shard) for i in range(MODEL_PARAMS[model_size]["files"])], device[0] if isinstance(device, tuple) else device)
  37. else:
  38. weights = load(str(model_path), shard)
  39. weights = convert_from_huggingface(weights, model, MODEL_PARAMS[model_size]["args"]["n_heads"], MODEL_PARAMS[model_size]["args"]["n_kv_heads"])
  40. weights = fix_bf16(weights)
  41. with Context(BEAM=0):
  42. # replace weights in model
  43. load_state_dict(model, weights, strict=False, consume=False) # consume=True
  44. return model
  45. class TinygradDynamicShardInferenceEngine(InferenceEngine):
  46. def __init__(self, shard_downloader: ShardDownloader):
  47. self.shard = None
  48. self.shard_downloader = shard_downloader
  49. self.executor = ThreadPoolExecutor(max_workers=1)
  50. async def infer_prompt(self, request_id: str, shard: Shard, prompt: str, image_str: Optional[str] = None, inference_state: Optional[str] = None) -> (np.ndarray, str, bool):
  51. await self.ensure_shard(shard)
  52. start_pos = json.loads(inference_state or "{}").get("start_pos", 0)
  53. n_captured_toks = json.loads(inference_state or "{}").get("n_captured_toks", 0)
  54. toks = await asyncio.get_event_loop().run_in_executor(self.executor, self.tokenizer.encode, prompt)
  55. h = await asyncio.get_event_loop().run_in_executor(self.executor, lambda: self.model(Tensor([toks]), start_pos, TEMPERATURE).realize())
  56. if h.shape == (1,):
  57. start_pos += len(toks)
  58. start_pos += 1
  59. n_captured_toks = 0
  60. return np.array([[h.item()]]), json.dumps({"start_pos": start_pos, "n_captured_toks": n_captured_toks}), h.item() == self.tokenizer.eos_token_id
  61. else:
  62. n_captured_toks = len(toks)
  63. return h.numpy(), json.dumps({"start_pos": start_pos, "n_captured_toks": n_captured_toks}), False
  64. async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray, inference_state: Optional[str] = None) -> Tuple[np.ndarray, str, bool]:
  65. await self.ensure_shard(shard)
  66. start_pos = json.loads(inference_state or "{}").get("start_pos", 0)
  67. n_captured_toks = json.loads(inference_state or "{}").get("n_captured_toks", 0)
  68. h = await asyncio.get_event_loop().run_in_executor(self.executor, lambda: self.model(Tensor(input_data), start_pos, TEMPERATURE).realize())
  69. if h.shape == (1,):
  70. start_pos += n_captured_toks
  71. start_pos += 1
  72. n_captured_toks = 0
  73. return np.array([[h.item()]]), json.dumps({"start_pos": start_pos, "n_captured_toks": n_captured_toks}), h.item() == self.tokenizer.eos_token_id
  74. else:
  75. return h.numpy(), json.dumps({"start_pos": start_pos, "n_captured_toks": n_captured_toks}), False
  76. async def ensure_shard(self, shard: Shard):
  77. if self.shard == shard:
  78. return
  79. model_path = await self.shard_downloader.ensure_shard(shard)
  80. if self.shard != shard:
  81. self.model = await asyncio.get_event_loop().run_in_executor(self.executor, build_transformer, model_path, shard, "8B" if "8b" in shard.model_id.lower() else "70B")
  82. tokenizer_path = str((model_path if model_path.is_dir() else model_path.parent))
  83. self.tokenizer = await resolve_tokenizer(tokenizer_path)
  84. self.shard = shard