123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- # An example to compile a small Tensorflow model to extremely portable C code
- import os, sys
- os.environ["CLANG"] = '1'
- os.environ["JIT"] = '2'
- import numpy as np
- import subprocess
- import tensorflow as tf
- import tf2onnx
- from extra.onnx import get_run_onnx
- from tinygrad.tensor import Tensor
- from extra.export_model import export_model_clang, compile_net, jit_model
- def get_uncompiled_model2(dataset_size=32, output_size=4):
- inputs = tf.keras.Input(shape=(dataset_size,), name="inputs")
- x = tf.keras.layers.Dense(16, activation="relu", name="dense_1")(inputs)
- x = tf.keras.layers.BatchNormalization()(x)
- x = tf.keras.layers.Dense(32, activation="relu", name="dense_2")(x)
- outputs = tf.keras.layers.Dense(output_size, activation="sigmoid", name="predictions")(x)
- model = tf.keras.Model(inputs=inputs, outputs=outputs)
- return model
- class TinyOnnx:
- def __init__(self, keras_model):
- input_signature = [tf.TensorSpec([1,32], tf.float32, name='x')]
- onnx_model, _ = tf2onnx.convert.from_keras(keras_model, input_signature, opset=13)
- self.run_onnx = get_run_onnx(onnx_model)
- def forward(self, x):
- return self.run_onnx({"x": x}, debug=False)['predictions']
- def compile_onnx_model(onnx_model):
- tinyonnx = TinyOnnx(onnx_model)
- the_input = Tensor.randn(1,32)
- run, special_names = jit_model(tinyonnx, the_input)
- functions, statements, bufs, bufs_to_save = compile_net(run, special_names)
- prg = export_model_clang(functions, statements, bufs, {}, ["input0"], ["output0"])
- the_output = run(the_input)
- cprog = ["#include <string.h>", "#include <stdio.h>", "#include <stdlib.h>"]
- cprog.append(prg)
- # weights
- cprog.append("void initialize(float *weights) {")
- weights = bytes()
- for name,cl in bufs_to_save.items():
- cprog.append(f"memcpy({name}, weights + {len(weights)//4}, {len(cl._buf)*4});")
- weights += bytes(cl._buf)
- cprog.append("}")
- # write the weights to disk
- with open("/tmp/tf_weights", "wb") as f:
- f.write(weights)
- # test program
- cprog.append(f"""int main(int argc, char *argv[]) {{
- // read in the weights from disk
- FILE *f = fopen("/tmp/tf_weights", "rb");
- float *weights = (float *)malloc({len(weights)});
- fread(weights, 1, {len(weights)}, f);
- fclose(f);
- // init the net
- initialize(weights);
- // test run
- float input[32];
- float outputs[4];
- for (int i = 0; i < 32; i++) scanf("%f", &input[i]);
- net(input, outputs);
- printf("%f %f %f %f\\n", outputs[0], outputs[1], outputs[2], outputs[3]);
- }}""")
- # ready the program
- prg = '\n'.join(cprog)
- print(prg)
- # add test weights
- subprocess.check_output(['clang', '-O2', '-lm', '-fPIC', '-x', 'c', '-', '-o', "/tmp/tf_test"], input=prg.encode('utf-8'))
- tinygrad_output = the_output[0].numpy()[0].tolist()
- print("tinygrad:", tinygrad_output, file=sys.stderr)
- c_input = ' '.join(["%f" % x for x in the_input[0].numpy()])+"\n"
- c_output = [float(x) for x in subprocess.check_output(["/tmp/tf_test"], input=c_input.encode('utf-8')).decode('utf-8').strip().split(" ")]
- print("compiled:", c_output, file=sys.stderr)
- np.testing.assert_allclose(tinygrad_output, c_output, atol=1e-5, rtol=1e-5)
- return the_input.numpy(), c_output
- if __name__ == "__main__":
- keras_model = get_uncompiled_model2()
- test_input, test_output = compile_onnx_model(keras_model)
- tf_output = keras_model(test_input).numpy()[0]
- print("keras: ", tf_output, file=sys.stderr)
- np.testing.assert_allclose(tf_output, test_output, atol=1e-5, rtol=1e-5)
|