standard_node.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488
  1. import numpy as np
  2. import json
  3. import asyncio
  4. import uuid
  5. import time
  6. import traceback
  7. from typing import List, Dict, Optional, Tuple, Union, Set
  8. from exo.networking import Discovery, PeerHandle, Server
  9. from exo.inference.inference_engine import InferenceEngine, Shard
  10. from .node import Node
  11. from exo.topology.topology import Topology
  12. from exo.topology.device_capabilities import device_capabilities
  13. from exo.topology.partitioning_strategy import Partition, PartitioningStrategy, map_partitions_to_shards
  14. from exo import DEBUG
  15. from exo.helpers import AsyncCallbackSystem
  16. from exo.viz.topology_viz import TopologyViz
  17. from exo.download.hf.hf_helpers import RepoProgressEvent
  18. from exo.inference.inference_engine import get_inference_engine, InferenceEngine
  19. from exo.download.hf.hf_shard_download import HFShardDownloader
  20. class StandardNode(Node):
  21. def __init__(
  22. self,
  23. _id: str,
  24. server: Server,
  25. inference_engine: InferenceEngine,
  26. discovery: Discovery,
  27. partitioning_strategy: PartitioningStrategy = None,
  28. max_generate_tokens: int = 1024,
  29. default_sample_temperature: float = 0.0,
  30. topology_viz: Optional[TopologyViz] = None,
  31. shard_downloader: Optional[HFShardDownloader] = None,
  32. ):
  33. self.id = _id
  34. self.inference_engine = inference_engine
  35. self.server = server
  36. self.discovery = discovery
  37. self.partitioning_strategy = partitioning_strategy
  38. self.peers: List[PeerHandle] = {}
  39. self.topology: Topology = Topology()
  40. self.device_capabilities = device_capabilities()
  41. self.buffered_token_output: Dict[str, Tuple[List[int], bool]] = {}
  42. self.buffered_logits: Dict[str, List[np.ndarray]] = {}
  43. self.buffered_inputs: Dict[str, List[np.ndarray]] = {}
  44. self.max_generate_tokens = max_generate_tokens
  45. self.topology_viz = topology_viz
  46. self.default_sample_temperature = default_sample_temperature
  47. self._on_token = AsyncCallbackSystem[str, Tuple[str, List[int], bool]]()
  48. self._on_opaque_status = AsyncCallbackSystem[str, Tuple[str, str]]()
  49. self._on_opaque_status.register("node_status").on_next(self.on_node_status)
  50. self.node_download_progress: Dict[str, RepoProgressEvent] = {}
  51. self.topology_inference_engines_pool: List[List[str]] = []
  52. self.shard_downloader = shard_downloader
  53. async def start(self, wait_for_peers: int = 0) -> None:
  54. await self.server.start()
  55. await self.discovery.start()
  56. await self.update_peers(wait_for_peers)
  57. await self.collect_topology()
  58. if DEBUG >= 2: print(f"Collected topology: {self.topology}")
  59. asyncio.create_task(self.periodic_topology_collection(1.0))
  60. async def stop(self) -> None:
  61. await self.discovery.stop()
  62. await self.server.stop()
  63. def on_node_status(self, request_id, opaque_status):
  64. try:
  65. status_data = json.loads(opaque_status)
  66. if status_data.get("type", "") == "supported_inference_engines":
  67. node_id = status_data.get("node_id")
  68. engines = status_data.get("engines", [])
  69. self.topology_inference_engines_pool.append(engines)
  70. if status_data.get("type", "") == "node_status":
  71. if status_data.get("status", "").startswith("start_"):
  72. self.current_topology.active_node_id = status_data.get("node_id")
  73. elif status_data.get("status", "").startswith("end_"):
  74. if status_data.get("node_id") == self.current_topology.active_node_id:
  75. self.current_topology.active_node_id = None
  76. download_progress = None
  77. if status_data.get("type", "") == "download_progress":
  78. if DEBUG >= 8: print(f"Download progress from {status_data.get('node_id')}: {status_data.get('progress')}")
  79. download_progress = RepoProgressEvent.from_dict(status_data.get('progress'))
  80. self.node_download_progress[status_data.get('node_id')] = download_progress
  81. if self.topology_viz:
  82. self.topology_viz.update_visualization(self.current_topology, self.partitioning_strategy.partition(self.current_topology), self.id, self.node_download_progress)
  83. except Exception as e:
  84. if DEBUG >= 1: print(f"Error updating visualization: {e}")
  85. if DEBUG >= 1: traceback.print_exc()
  86. def get_supported_inference_engines(self):
  87. supported_engine_names = []
  88. if self.inference_engine.__class__.__name__ == 'MLXDynamicShardInferenceEngine':
  89. supported_engine_names.append('mlx')
  90. supported_engine_names.append('tinygrad')
  91. else:
  92. supported_engine_names.append('tinygrad')
  93. return supported_engine_names
  94. async def broadcast_supported_engines(self, supported_engines_names: List[str]):
  95. status_message = json.dumps({"type": "supported_inference_engines", "node_id": self.id, "engines": supported_engines_names})
  96. await self.broadcast_opaque_status("", status_message)
  97. def get_topology_inference_engines(self) -> List[List[str]]:
  98. return self.topology_inference_engines_pool
  99. async def process_inference_result(
  100. self,
  101. shard,
  102. result: np.ndarray,
  103. request_id: Optional[str] = None,
  104. inference_state: Optional[dict] = None,
  105. ):
  106. if shard.model_id != 'stable-diffusion-2-1-base':
  107. if request_id not in self.buffered_token_output:
  108. self.buffered_token_output[request_id] = ([], False)
  109. is_finished = len(self.buffered_token_output[request_id][0]) >= self.max_generate_tokens
  110. if shard.is_last_layer() and not is_finished:
  111. token = await self.inference_engine.sample(result, temp = self.default_sample_temperature)
  112. self.buffered_token_output[request_id][0].append(token.item())
  113. intermediate_result = self.buffered_token_output[request_id][0]
  114. if DEBUG >= 2: print(f"[{request_id}] result size: {result.size}, is finished: {is_finished}, buffered tokens: {len(self.buffered_token_output[request_id][0])}")
  115. is_finished = token.item() == self.inference_engine.tokenizer.eos_token_id
  116. forward = token.reshape(1, -1)
  117. else:
  118. forward = result
  119. else:
  120. await self.inference_engine.ensure_shard(shard)
  121. is_finished = inference_state.get('is_finished', False)
  122. intermediate_result, inference_state = self.handle_stable_diffusion(inference_state, result)
  123. forward = result
  124. if shard.is_last_layer():
  125. asyncio.create_task(self.broadcast_result(request_id, intermediate_result, is_finished))
  126. self.trigger_on_token_callbacks(request_id, intermediate_result, is_finished)
  127. if is_finished:
  128. if shard.model_id != 'stable-diffusion-2-1-base':
  129. self.buffered_token_output[request_id] = (self.buffered_token_output[request_id][0], True)
  130. intermediate_result = self.buffered_token_output[request_id][0]
  131. else:
  132. asyncio.create_task(self.forward_tensor(shard, forward, request_id, self.get_partition_index(offset = 1), inference_state))
  133. return np.array(intermediate_result)
  134. async def process_prompt(
  135. self,
  136. base_shard: Shard,
  137. prompt: str,
  138. request_id: Optional[str] = None,
  139. inference_state: Optional[dict] = {},
  140. ) -> Optional[np.ndarray]:
  141. shard = self.get_current_shard(base_shard)
  142. asyncio.create_task(
  143. self.broadcast_opaque_status(
  144. request_id,
  145. json.dumps({
  146. "type": "node_status",
  147. "node_id": self.id,
  148. "status": "start_process_prompt",
  149. "base_shard": base_shard.to_dict(),
  150. "shard": shard.to_dict(),
  151. "prompt": prompt,
  152. "request_id": request_id,
  153. }),
  154. )
  155. )
  156. start_time = time.perf_counter_ns()
  157. resp = await self._process_prompt(base_shard, prompt, request_id, inference_state)
  158. end_time = time.perf_counter_ns()
  159. elapsed_time_ns = end_time - start_time
  160. asyncio.create_task(
  161. self.broadcast_opaque_status(
  162. request_id,
  163. json.dumps({
  164. "type": "node_status",
  165. "node_id": self.id,
  166. "status": "end_process_prompt",
  167. "base_shard": base_shard.to_dict(),
  168. "shard": shard.to_dict(),
  169. "prompt": prompt,
  170. "request_id": request_id,
  171. "elapsed_time_ns": elapsed_time_ns,
  172. "result_size": resp.size if resp is not None else 0,
  173. }),
  174. )
  175. )
  176. return resp
  177. async def _process_prompt(self, base_shard: Shard, prompt: str, request_id: Optional[str] = None, inference_state: Optional[dict] = None) -> Optional[np.ndarray]:
  178. if request_id is None:
  179. request_id = str(uuid.uuid4())
  180. shard = self.get_current_shard(base_shard)
  181. if DEBUG >= 2: print(f"[{request_id}] process prompt: {base_shard=} {shard=} {prompt=}")
  182. if not shard.is_first_layer():
  183. if DEBUG >= 2: print(f"[{request_id}] forwarding to next shard: {base_shard=} {shard=} {prompt=}")
  184. resp = await self.forward_prompt(shard, prompt, request_id, 0, inference_state)
  185. return None
  186. else:
  187. result,inference_state = await self.inference_engine.infer_prompt(request_id, shard, prompt, inference_state)
  188. ret = await self.process_inference_result(shard, result, request_id, inference_state)
  189. return result
  190. async def process_tensor(
  191. self,
  192. base_shard: Shard,
  193. tensor: np.ndarray,
  194. request_id: Optional[str] = None,
  195. inference_state: Optional[dict] = None,
  196. ) -> Optional[np.ndarray]:
  197. shard = self.get_current_shard(base_shard)
  198. asyncio.create_task(
  199. self.broadcast_opaque_status(
  200. request_id,
  201. json.dumps({
  202. "type": "node_status",
  203. "node_id": self.id,
  204. "status": "start_process_tensor",
  205. "base_shard": base_shard.to_dict(),
  206. "shard": shard.to_dict(),
  207. "tensor_size": tensor.size,
  208. "tensor_shape": tensor.shape,
  209. "request_id": request_id,
  210. }),
  211. )
  212. )
  213. start_time = time.perf_counter_ns()
  214. resp = await self._process_tensor(shard, tensor, request_id, inference_state)
  215. end_time = time.perf_counter_ns()
  216. elapsed_time_ns = end_time - start_time
  217. asyncio.create_task(
  218. self.broadcast_opaque_status(
  219. request_id,
  220. json.dumps({
  221. "type": "node_status",
  222. "node_id": self.id,
  223. "status": "end_process_tensor",
  224. "base_shard": base_shard.to_dict(),
  225. "shard": shard.to_dict(),
  226. "request_id": request_id,
  227. "elapsed_time_ns": elapsed_time_ns,
  228. "result_size": resp.size if resp is not None else 0,
  229. }),
  230. )
  231. )
  232. return resp
  233. async def _process_tensor(
  234. self,
  235. base_shard: Shard,
  236. tensor: np.ndarray,
  237. request_id: Optional[str] = None,
  238. inference_state: Optional[dict] = None,
  239. ) -> Optional[np.ndarray]:
  240. if request_id is None:
  241. request_id = str(uuid.uuid4())
  242. shard = self.get_current_shard(base_shard)
  243. if DEBUG >= 1: print(f"[{request_id}] process_tensor: {tensor.size=} {tensor.shape=}")
  244. try:
  245. result, inference_state = await self.inference_engine.infer_tensor(request_id, shard, tensor, inference_state)
  246. ret = await self.process_inference_result(shard, result, request_id, inference_state)
  247. return ret
  248. except Exception as e:
  249. print(f"Error processing tensor for shard {shard}: {e}")
  250. traceback.print_exc()
  251. return None
  252. async def forward_prompt(
  253. self,
  254. base_shard: Shard,
  255. prompt: str,
  256. request_id: str,
  257. target_index: int,
  258. inference_state: Optional[dict] = None,
  259. ) -> None:
  260. if DEBUG >= 1: print(f"target partition index: {target_index}")
  261. target_id = self.partitioning_strategy.partition(self.topology)[target_index].node_id
  262. next_shard = self.get_current_shard(base_shard, target_index)
  263. if DEBUG >= 2: print(f"Computed target from: {base_shard} {target_index}, {self.topology}. next shard: {next_shard}")
  264. if target_id == self.id:
  265. await self.process_prompt(next_shard, prompt, request_id)
  266. else:
  267. target_peer = next((p for p in self.peers if p.id() == target_id), None)
  268. if not target_peer:
  269. raise ValueError(f"Peer for {target_index} not found")
  270. if DEBUG >= 1: print(f"Sending prompt to {target_peer.id()}: {prompt}")
  271. await target_peer.send_prompt(next_shard, prompt, request_id=request_id, inference_state=inference_state)
  272. async def forward_tensor(
  273. self,
  274. base_shard: Shard,
  275. tensor: np.ndarray,
  276. request_id: str,
  277. target_index: int,
  278. inference_state: Optional[dict] = None,
  279. ) -> None:
  280. if DEBUG >= 1: print(f"target partition index: {target_index}")
  281. target_id = self.partitioning_strategy.partition(self.topology)[target_index].node_id
  282. next_shard = self.get_current_shard(base_shard, target_index)
  283. if DEBUG >= 2: print(f"Computed target from: {base_shard} {target_index}, {self.topology}. target shard: {next_shard}")
  284. if target_id == self.id:
  285. await self.process_tensor(next_shard, tensor, request_id, inference_state)
  286. else:
  287. target_peer = next((p for p in self.peers if p.id() == target_id), None)
  288. if not target_peer:
  289. raise ValueError(f"Peer for {target_index} not found")
  290. if DEBUG >= 1: print(f"Sending tensor to {target_peer.id()}: {tensor}")
  291. await target_peer.send_tensor(next_shard, tensor, request_id=request_id, inference_state=inference_state)
  292. def get_partition_index(self, offset: int = 0):
  293. if not self.partitioning_strategy:
  294. if DEBUG >= 1: print("No partitioning strategy found. Skipping forward.")
  295. return None
  296. partitions = self.partitioning_strategy.partition(self.topology)
  297. current_partition_index = next((i for i, p in enumerate(partitions) if p.node_id == self.id), None)
  298. if current_partition_index is None:
  299. raise ValueError(f"No current partition found for node: {self.id}")
  300. return (current_partition_index + offset) % len(partitions)
  301. def get_current_shard(self, base_shard: Shard, index: Optional[int] = None) -> Shard:
  302. if index is None:
  303. index = self.get_partition_index()
  304. partitions = self.partitioning_strategy.partition(self.topology)
  305. shards = map_partitions_to_shards(partitions, base_shard.n_layers, base_shard.model_id)
  306. return shards[index]
  307. async def update_peers(self, wait_for_peers: int = 0) -> bool:
  308. next_peers = await self.discovery.discover_peers(wait_for_peers)
  309. current_peer_ids = {peer.id() for peer in self.peers}
  310. next_peer_ids = {peer.id() for peer in next_peers}
  311. peers_added = [peer for peer in next_peers if peer.id() not in current_peer_ids]
  312. peers_removed = [peer for peer in self.peers if peer.id() not in next_peer_ids]
  313. peers_updated = [peer for peer in next_peers if peer.id() in current_peer_ids and any(p.addr() != peer.addr() for p in self.peers if p.id() == peer.id())]
  314. peers_unchanged = [peer for peer in next_peers if peer.id() in current_peer_ids and all(p.addr() == peer.addr() for p in self.peers if p.id() == peer.id())]
  315. peers_to_disconnect = [peer for peer in peers_removed if await peer.is_connected()]
  316. peers_to_connect = [peer for peer in peers_added + peers_updated + peers_unchanged if not await peer.is_connected()]
  317. def _pretty(peers: List[PeerHandle]) -> List[str]:
  318. return [f"{peer.id()}@{peer.addr()}" for peer in peers]
  319. if DEBUG >= 2:
  320. print(f"update_peers: added={peers_added} removed={peers_removed} updated={peers_updated} unchanged={peers_unchanged} to_disconnect={peers_to_disconnect} to_connect={peers_to_connect}")
  321. async def disconnect_with_timeout(peer, timeout=5):
  322. try:
  323. await asyncio.wait_for(peer.disconnect(), timeout)
  324. return True
  325. except Exception as e:
  326. print(f"Error disconnecting peer {peer.id()}@{peer.addr()}: {e}")
  327. traceback.print_exc()
  328. return False
  329. async def connect_with_timeout(peer, timeout=5):
  330. try:
  331. await asyncio.wait_for(peer.connect(), timeout)
  332. return True
  333. except Exception as e:
  334. print(f"Error connecting peer {peer.id()}@{peer.addr()}: {e}")
  335. traceback.print_exc()
  336. return False
  337. disconnect_results = await asyncio.gather(*(disconnect_with_timeout(peer) for peer in peers_to_disconnect), return_exceptions=True)
  338. connect_results = await asyncio.gather(*(connect_with_timeout(peer) for peer in peers_to_connect), return_exceptions=True)
  339. successful_disconnects = [peer for peer, result in zip(peers_to_disconnect, disconnect_results) if result is True]
  340. failed_disconnects = [peer for peer, result in zip(peers_to_disconnect, disconnect_results) if result is False]
  341. successful_connects = [peer for peer, result in zip(peers_to_connect, connect_results) if result is True]
  342. failed_connects = [peer for peer, result in zip(peers_to_connect, connect_results) if result is False]
  343. if DEBUG >= 1:
  344. if successful_disconnects: print(f"Successfully disconnected peers: {_pretty(successful_disconnects)}")
  345. if failed_disconnects: print(f"Failed to disconnect peers: {_pretty(failed_disconnects)}")
  346. if successful_connects: print(f"Successfully connected peers: {_pretty(successful_connects)}")
  347. if failed_connects: print(f"Failed to connect peers: {_pretty(failed_connects)}")
  348. self.peers = next_peers
  349. return len(peers_added) > 0 or len(peers_removed) > 0 or len(peers_updated) > 0
  350. async def select_best_inference_engine(self):
  351. if self.inference_engine.__class__.__name__ == 'DummyInferenceEngine': return
  352. supported_engines = self.get_supported_inference_engines()
  353. await self.broadcast_supported_engines(supported_engines)
  354. if len(self.get_topology_inference_engines()):
  355. self.inference_engine = get_inference_engine(supported_engines[0], self.shard_downloader)
  356. async def periodic_topology_collection(self, interval: int):
  357. while True:
  358. await asyncio.sleep(interval)
  359. try:
  360. did_peers_change = await self.update_peers()
  361. if DEBUG >= 2: print(f"{did_peers_change=}")
  362. if did_peers_change:
  363. await self.collect_topology()
  364. await self.select_best_inference_engine()
  365. except Exception as e:
  366. print(f"Error collecting topology: {e}")
  367. traceback.print_exc()
  368. async def get_inference_result(self, request_id: str) -> Tuple[Optional[np.ndarray], bool]:
  369. if request_id not in self.buffered_token_output:
  370. return None, False
  371. return np.array(self.buffered_token_output[request_id][0]), self.buffered_token_output[request_id][1]
  372. async def collect_topology(self, visited: set[str] = set(), max_depth: int = 4) -> Topology:
  373. next_topology = Topology()
  374. next_topology.update_node(self.id, self.device_capabilities)
  375. if DEBUG >= 2: print(f"Collecting topology {max_depth=} {visited=}")
  376. prev_visited = visited.copy()
  377. visited.add(self.id)
  378. visited.update(p.id() for p in self.peers)
  379. for peer in self.peers:
  380. next_topology.update_node(peer.id(), peer.device_capabilities())
  381. next_topology.add_edge(self.id, peer.id())
  382. if peer.id() in prev_visited:
  383. continue
  384. if max_depth <= 0:
  385. if DEBUG >= 2: print("Max depth reached. Skipping...")
  386. continue
  387. try:
  388. other_topology = await asyncio.wait_for(peer.collect_topology(visited, max_depth=max_depth - 1), timeout=5.0)
  389. if DEBUG >= 2: print(f"Collected topology from: {peer.id()}: {other_topology}")
  390. self.topology.merge(other_topology)
  391. except Exception as e:
  392. print(f"Error collecting topology from {peer.id()}: {e}")
  393. traceback.print_exc()
  394. next_topology.active_node_id = self.topology.active_node_id # this is not so clean.
  395. self.topology = next_topology
  396. if self.topology_viz:
  397. self.topology_viz.update_visualization(self.current_topology, self.partitioning_strategy.partition(self.current_topology), self.id)
  398. return next_topology
  399. @property
  400. def on_token(self) -> AsyncCallbackSystem[str, Tuple[str, List[int], bool]]:
  401. return self._on_token
  402. @property
  403. def on_opaque_status(self) -> AsyncCallbackSystem[str, Tuple[str, str]]:
  404. return self._on_opaque_status
  405. def trigger_on_token_callbacks(self, request_id: str, tokens: List[int], is_finished: bool) -> None:
  406. if DEBUG >= 2: print(f"Triggering all on_token callbacks with {request_id=} num_tokens={len(tokens)} {is_finished=}")
  407. self.on_token.trigger_all(request_id, tokens, is_finished)
  408. async def broadcast_result(self, request_id: str, result: List[int], is_finished: bool) -> None:
  409. async def send_result_to_peer(peer):
  410. try:
  411. await asyncio.wait_for(peer.send_result(request_id, result, is_finished), timeout=15.0)
  412. except asyncio.TimeoutError:
  413. print(f"Timeout broadcasting result to {peer.id()}")
  414. except Exception as e:
  415. print(f"Error broadcasting result to {peer.id()}: {e}")
  416. traceback.print_exc()
  417. await asyncio.gather(*[send_result_to_peer(peer) for peer in self.peers], return_exceptions=True)
  418. async def broadcast_opaque_status(self, request_id: str, status: str) -> None:
  419. if DEBUG >= 8: print(f"Broadcasting opaque status: {request_id=} {status=}")
  420. async def send_status_to_peer(peer):
  421. try:
  422. await asyncio.wait_for(peer.send_opaque_status(request_id, status), timeout=15.0)
  423. except asyncio.TimeoutError:
  424. print(f"Timeout sending opaque status to {peer.id()}")
  425. except Exception as e:
  426. print(f"Error sending opaque status to {peer.id()}: {e}")
  427. traceback.print_exc()
  428. await asyncio.gather(*[send_status_to_peer(peer) for peer in self.peers], return_exceptions=True)
  429. # in the case of opaque status, we also want to receive our own opaque statuses
  430. self.on_opaque_status.trigger_all(request_id, status)
  431. @property
  432. def current_topology(self) -> Topology:
  433. return self.topology
  434. def handle_stable_diffusion(self, inference_state, result):
  435. if inference_state['is_step_finished']:
  436. inference_state['step']+=1
  437. progress = [inference_state['step'],inference_state['total_steps']]
  438. intermediate_result = result
  439. if progress[0] == progress[1]:
  440. intermediate_result = result
  441. return intermediate_result, inference_state