inference.py 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. from pathlib import Path
  2. import json
  3. import os
  4. from exo.inference.tinygrad.models.llama import Transformer, convert_from_huggingface, fix_bf16, sample_logits
  5. from exo.inference.shard import Shard
  6. from exo.inference.tokenizers import resolve_tokenizer
  7. from tinygrad.nn.state import load_state_dict
  8. from tinygrad import Tensor, nn, Context
  9. from exo.inference.inference_engine import InferenceEngine
  10. import numpy as np
  11. from exo.inference.tinygrad.tinygrad_helpers import concat_weights, load
  12. from exo.download.shard_download import ShardDownloader
  13. from concurrent.futures import ThreadPoolExecutor
  14. from .stateful_model import StatefulModel
  15. import asyncio
  16. Tensor.no_grad = True
  17. # default settings
  18. TEMPERATURE = int(os.getenv("TEMPERATURE", 0.85))
  19. TOP_K = 25
  20. TOP_P = 0.9
  21. ALPHA_F = 0.1
  22. ALPHA_P = 0.0
  23. MODEL_PARAMS = {
  24. "1B": {
  25. "args": {
  26. "dim": 2048, "n_heads": 32, "n_kv_heads": 8, "n_layers": 16, "norm_eps": 1e-5, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 8192,
  27. "rope_scaling": {"factor": 32.0, "high_freq_factor": 4.0, "low_freq_factor": 1.0, "original_max_position_embeddings": 8192, "rope_type": "llama3"}, "tie_word_embeddings": True
  28. }, "files": 1
  29. }, "3B": {
  30. "args": {
  31. "dim": 3072, "n_heads": 24, "n_kv_heads": 8, "n_layers": 28, "norm_eps": 1e-5, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 8192,
  32. "rope_scaling": {"factor": 32.0, "high_freq_factor": 4.0, "low_freq_factor": 1.0, "original_max_position_embeddings": 8192, "rope_type": "llama3"}, "tie_word_embeddings": True
  33. }, "files": 1
  34. }, "8B": {"args": {"dim": 4096, "n_heads": 32, "n_kv_heads": 8, "n_layers": 32, "norm_eps": 1e-5, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 14336}, "files": 1},
  35. "70B": {"args": {"dim": 8192, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-5, "rope_theta": 500000, "vocab_size": 128256, "hidden_dim": 28672}, "files": 8}
  36. }
  37. def build_transformer(model_path: Path, shard: Shard, model_size="8B", device=None):
  38. # build model
  39. linear = nn.Linear
  40. model = Transformer(**MODEL_PARAMS[model_size]["args"], linear=linear, max_context=8192, jit=True, shard=shard)
  41. # load weights
  42. if model_path.is_dir():
  43. if (model_path/"model.safetensors.index.json").exists(): weights = load(str(model_path/"model.safetensors.index.json"), shard)
  44. elif (model_path/"model.safetensors").exists(): weights = load(str(model_path/"model.safetensors"), shard)
  45. else: weights = concat_weights([load(str(model_path/f"consolidated.{i:02d}.pth"), shard) for i in range(MODEL_PARAMS[model_size]["files"])], device[0] if isinstance(device, tuple) else device)
  46. else:
  47. weights = load(str(model_path), shard)
  48. weights = convert_from_huggingface(weights, model, MODEL_PARAMS[model_size]["args"]["n_heads"], MODEL_PARAMS[model_size]["args"]["n_kv_heads"])
  49. weights = fix_bf16(weights)
  50. with Context(BEAM=0):
  51. # replace weights in model
  52. load_state_dict(model, weights, strict=False, consume=False) # consume=True
  53. return model
  54. class TinygradDynamicShardInferenceEngine(InferenceEngine):
  55. def __init__(self, shard_downloader: ShardDownloader):
  56. self.shard = None
  57. self.shard_downloader = shard_downloader
  58. self.executor = ThreadPoolExecutor(max_workers=1)
  59. async def sample(self, x: np.ndarray, temp=TEMPERATURE, top_p: float = 0.0) -> np.ndarray:
  60. logits = x[:, -1, :]
  61. def sample_wrapper():
  62. return sample_logits(Tensor(logits).flatten(), temp, 0, 0.8, top_p, 0.0).realize().numpy().astype(int)
  63. return await asyncio.get_running_loop().run_in_executor(self.executor, sample_wrapper)
  64. async def encode(self, shard: Shard, prompt: str) -> np.ndarray:
  65. await self.ensure_shard(shard)
  66. tokens = await asyncio.get_running_loop().run_in_executor(self.executor, self.tokenizer.encode, prompt)
  67. return await asyncio.get_running_loop().run_in_executor(self.executor, np.array, tokens)
  68. async def decode(self, shard: Shard, tokens) -> str:
  69. await self.ensure_shard(shard)
  70. return await asyncio.get_running_loop().run_in_executor(self.executor, self.tokenizer.decode, tokens)
  71. async def infer_tensor(self, request_id: str, shard: Shard, input_data: np.ndarray) -> np.ndarray:
  72. await self.ensure_shard(shard)
  73. return await asyncio.get_running_loop().run_in_executor(self.executor, lambda: self.model(Tensor(input_data), request_id).realize().numpy())
  74. async def ensure_shard(self, shard: Shard):
  75. if self.shard == shard:
  76. return
  77. model_path = await self.shard_downloader.ensure_shard(shard, self.__class__.__name__)
  78. if self.shard != shard:
  79. loop = asyncio.get_running_loop()
  80. parameters = "1B" if "1b" in shard.model_id.lower() else "3B" if "3b" in shard.model_id.lower() else "8B" if "8b" in shard.model_id.lower() else "70B"
  81. model_shard = await loop.run_in_executor(self.executor, build_transformer, model_path, shard, parameters)
  82. tokenizer_path = str((model_path if model_path.is_dir() else model_path.parent))
  83. self.tokenizer = await resolve_tokenizer(tokenizer_path)
  84. self.shard = shard
  85. self.model = await loop.run_in_executor(self.executor, StatefulModel, model_shard)